Learning Objectives

By the end of this section, you will be able to:

  • Explain the organization of elements in the periodic table
  • Predict some general properties of elements based on their location within the periodic table

There are many known elements, both naturally occurring and manmade. In ancient times the known elements were carbon, iron, sulfur, gold, silver, copper, tin, lead, mercury and zinc.  It was not until the late 1700s that new elements began to be discovered (Ti, Zr, U, Te, Sr, Ce, Cr, Si, Se, Ce, Li, V, Th).  In the 1800s Sir Humphrey Davy discovered several alkali and alkaline earth metals and halogens through the use of electricity. The development of spectroscopy spurred discovery of additional new elements in the 1800s, including discovery of Cesium, Rubidium, and Helium. Helium was first discovered by analyzing light from the sun in 1868 before it was found on Earth in 1882, through the spectral analysis of lava from Mount Vesuvius.

Spectroscopy remains a cornerstone of chemical analysis.

As early chemists worked to purify ores and discovered more elements, patterns in the chemical behavior of elements emerged. In 1789, Antoine Lavoisier arranged the 33 known chemical elements into four groups: gases, metals, nonmetals and earths.  In 1829, Johann Wolfgang Döbereiner observed that many of the elements could be arranged in groups of three, now known as “Döbereiner’s triads”. One such grouping includes lithium (Li), sodium (Na), and potassium (K): These elements all are shiny, conduct heat and electricity well, and have similar chemical properties. Fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) also exhibit similar properties to each other, but these properties are drastically different from those of any of the elements above.

Dimitri Mendeleev in Russia (1869) and Lothar Meyer in Germany (1870) independently recognized that there was a periodic relationship among the properties of the elements known at that time. Both published tables with the elements arranged according to increasing atomic mass. But Mendeleev went one step further than Meyer: He used his table to predict the existence of elements that would have the properties similar to aluminum and silicon, but were yet unknown. The discoveries of gallium (1875) and germanium (1886) provided great support for Mendeleev’s work. Although Mendeleev and Meyer had a long dispute over priority, Mendeleev’s contributions to the development of the periodic table are now more widely recognized (Figure 1).

Figure A shows a photograph of Dimitri Mendeleev. Figure B shows the first periodic table developed by Mendeleev, which had eight groups and twelve periods. In the first group (—, R superscript plus sign 0) is the following information: H = 1, L i = 7, N a = 23, K = 39, (C u = 63), R b = 85, (A g = 108), C a = 183, (—),—, (A u = 199) —. Note that each of these entries corresponds to one of the twelve periods respectively. The second group (—, R 0) contains the following information: (not entry for period 1) B o = 9, 4, M g = 24, C a = 40, Z n = 65, S r = 87, C d = 112, B a = 187, —, —, H g = 200, —. Note the ach of these entries corresponds to one of the twelve periods respectively. Group three (—, R superscript one 0 superscript nine) contains the information: (no entry for period 1), B = 11, A l = 27, 8. — = 44, — = 68, ? Y t = 88, I n = 113, ? D I = 138, —, ? E r = 178, T l = 204, —. Note that each of these entries corresponds to one of the twelve periods respectively. Group four (RH superscript four, R0 superscript eight) contains the following information: (no entry for period 1), C = 12, B i = 28, T i = 48, — = 72, Z r = 90, S n = 118, ? C o = 140, ? L a = 180, P b = 207, T h = 231. Note that each of these entries corresponds to one of the twelve periods respectively. Group five (R H superscript two, R superscript two 0 superscript five) contains the following information: (no entry for period 1), N = 14, P = 31, V = 51, A s = 75, N b = 94, S b = 122, —, —, T a = 182, B l = 208, —. Note that each of these entries corresponds to one of the twelve periods respectively. Group six (R H superscript two, R 0 superscript three) contains the following information: (no entry for period 1), O = 16, S = 32, C r = 52, S o = 78, M o = 96, T o = 125, —, —, W = 184, —, U = 240. Note that each of these entries corresponds to one of the twelve periods respectively. Group seven (R H , R superscript plus sing, 0 superscript 7) contains the following information: (no entry for period 1), F = 19, C l = 35, 5, M n = 55, B r = 80, — = 100, J = 127, —, —, —, —, —. Note that each of these entries corresponds to one of the twelve periods respectively. Group 8 (—, R 0 superscript four) contains the following information: (no entry for periods 1, 2, 3), in period 4: F o = 56, C o = 59, N i = 59, C u = 63, no entry for period five, in period 6: R u = 104, R h = 104, P d = 106, A g = 108, no entries for periods 7, 8 , or 9, in period 10: O s = 195, I r = 197, P t = 198, A u = 199, no entries for periods 11 or 12.
Figure 1. (a) Dimitri Mendeleev is widely credited with creating (b) the first periodic table of the elements. (credit a: modification of work by Serge Lachinov; credit b: modification of work by “Den fjättrade ankan”/Wikimedia Commons)

Once the structural features of atoms were understood, it became apparent that the periodic relationship involved these features. A modern periodic table arranges the elements in increasing order of their atomic numbers and groups atoms with similar properties in the same vertical column (Figure 2). Each box represents an element and contains its atomic number, symbol, average atomic mass, and (sometimes) name. The elements are arranged in seven horizontal rows, and 18 vertical groups. For the table to fit on a single page, parts of two of the rows, a total of 14 columns, are usually moved to a position below the main body of the table.

Many elements differ dramatically in their chemical and physical properties, but some elements are similar in their behaviors. For example, many elements appear shiny, are malleable (able to be deformed without breaking) and ductile (can be drawn into wires), and conduct heat and electricity well. Other elements are not shiny, malleable, or ductile, and are poor conductors of heat and electricity. We can sort the elements into large classes with common properties: metals (elements that are shiny, malleable, good conductors of heat and electricity—shaded yellow); nonmetals (elements that appear dull, poor conductors of heat and electricity—shaded green); and metalloids (elements that conduct heat and electricity moderately well, and possess some properties of metals and some properties of nonmetals—shaded purple).

The Periodic Table of Elements is shown. The 18 columns are labeled “Group” and the 7 rows are labeled “Period.” Below the table to the right is a box labeled “Color Code” with different colors for metals, metalloids, and nonmetals, as well as solids, liquids, and gases. To the left of this box is an enlarged picture of the upper-left most box on the table. The number 1 is in its upper-left hand corner and is labeled “Atomic number.” The letter “H” is in the middle in red indicating that it is a gas. It is labeled “Symbol.” Below that is the number 1.008 which is labeled “Atomic Mass.” Below that is the word hydrogen which is labeled “name.” The color of the box indicates that it is a nonmetal. Each element will be described in this order: atomic number; name; symbol; whether it is a metal, metalloid, or nonmetal; whether it is a solid, liquid, or gas; and atomic mass. Beginning at the top left of the table, or period 1, group 1, is a box containing “1; hydrogen; H; nonmetal; gas; and 1.008.” There is only one other element box in period 1, group 18, which contains “2; helium; H e; nonmetal; gas; and 4.003.” Period 2, group 1 contains “3; lithium; L i; metal; solid; and 6.94” Group 2 contains “4; beryllium; B e; metal; solid; and 9.012.” Groups 3 through 12 are skipped and group 13 contains “5; boron; B; metalloid; solid; 10.81.” Group 14 contains “6; carbon; C; nonmetal; solid; and 12.01.” Group 15 contains “7; nitrogen; N; nonmetal; gas; and 14.01.” Group 16 contains “8; oxygen; O; nonmetal; gas; and 16.00.” Group 17 contains “9; fluorine; F; nonmetal; gas; and 19.00.” Group 18 contains “10; neon; N e; nonmetal; gas; and 20.18.” Period 3, group 1 contains “11; sodium; N a; metal; solid; and 22.99.” Group 2 contains “12; magnesium; M g; metal; solid; and 24.31.” Groups 3 through 12 are skipped again in period 3 and group 13 contains “13; aluminum; A l; metal; solid; and 26.98.” Group 14 contains “14; silicon; S i; metalloid; solid; and 28.09.” Group 15 contains “15; phosphorous; P; nonmetal; solid; and 30.97.” Group 16 contains “16; sulfur; S; nonmetal; solid; and 32.06.” Group 17 contains “17; chlorine; C l; nonmetal; gas; and 35.45.” Group 18 contains “18; argon; A r; nonmetal; gas; and 39.95.” Period 4, group 1 contains “19; potassium; K; metal; solid; and 39.10.” Group 2 contains “20; calcium; C a; metal; solid; and 40.08.” Group 3 contains “21; scandium; S c; metal; solid; and 44.96.” Group 4 contains “22; titanium; T i; metal; solid; and 47.87.” Group 5 contains “23; vanadium; V; metal; solid; and 50.94.” Group 6 contains “24; chromium; C r; metal; solid; and 52.00.” Group 7 contains “25; manganese; M n; metal; solid; and 54.94.” Group 8 contains “26; iron; F e; metal; solid; and 55.85.” Group 9 contains “27; cobalt; C o; metal; solid; and 58.93.” Group 10 contains “28; nickel; N i; metal; solid; and 58.69.” Group 11 contains “29; copper; C u; metal; solid; and 63.55.” Group 12 contains “30; zinc; Z n; metal; solid; and 65.38.” Group 13 contains “31; gallium; G a; metal; solid; and 69.72.” Group 14 contains “32; germanium; G e; metalloid; solid; and 72.63.” Group 15 contains “33; arsenic; A s; metalloid; solid; and 74.92.” Group 16 contains “34; selenium; S e; nonmetal; solid; and 78.97.” Group 17 contains “35; bromine; B r; nonmetal; liquid; and 79.90.” Group 18 contains “36; krypton; K r; nonmetal; gas; and 83.80.” Period 5, group 1 contains “37; rubidium; R b; metal; solid; and 85.47.” Group 2 contains “38; strontium; S r; metal; solid; and 87.62.” Group 3 contains “39; yttrium; Y; metal; solid; and 88.91.” Group 4 contains “40; zirconium; Z r; metal; solid; and 91.22.” Group 5 contains “41; niobium; N b; metal; solid; and 92.91.” Group 6 contains “42; molybdenum; M o; metal; solid; and 95.95.” Group 7 contains “43; technetium; T c; metal; solid; and 97.” Group 8 contains “44; ruthenium; R u; metal; solid; and 101.1.” Group 9 contains “45; rhodium; R h; metal; solid; and 102.9.” Group 10 contains “46; palladium; P d; metal; solid; and 106.4.” Group 11 contains “47; silver; A g; metal; solid; and 107.9.” Group 12 contains “48; cadmium; C d; metal; solid; and 112.4.” Group 13 contains “49; indium; I n; metal; solid; and 114.8.” Group 14 contains “50; tin; S n; metal; solid; and 118.7.” Group 15 contains “51; antimony; S b; metalloid; solid; and 121.8.” Group 16 contains “52; tellurium; T e; metalloid; solid; and 127.6.” Group 17 contains “53; iodine; I; nonmetal; solid; and 126.9.” Group 18 contains “54; xenon; X e; nonmetal; gas; and 131.3.” Period 6, group 1 contains “55; cesium; C s; metal; solid; and 132.9.” Group 2 contains “56; barium; B a; metal; solid; and 137.3.” Group 3 breaks the pattern. The box has a large arrow pointing to a row of elements below the table with atomic numbers ranging from 57-71. In sequential order by atomic number, the first box in this row contains “57; lanthanum; L a; metal; solid; and 138.9.” To its right, the next is “58; cerium; C e; metal; solid; and 140.1.” Next is “59; praseodymium; P r; metal; solid; and 140.9.” Next is “60; neodymium; N d; metal; solid; and 144.2.” Next is “61; promethium; P m; metal; solid; and 145.” Next is “62; samarium; S m; metal; solid; and 150.4.” Next is “63; europium; E u; metal; solid; and 152.0.” Next is “64; gadolinium; G d; metal; solid; and 157.3.” Next is “65; terbium; T b; metal; solid; and 158.9.” Next is “66; dysprosium; D y; metal; solid; and 162.5.” Next is “67; holmium; H o; metal; solid; and 164.9.” Next is “68; erbium; E r; metal; solid; and 167.3.” Next is “69; thulium; T m; metal; solid; and 168.9.” Next is “70; ytterbium; Y b; metal; solid; and 173.1.” The last in this special row is “71; lutetium; L u; metal; solid; and 175.0.” Continuing in period 6, group 4 contains “72; hafnium; H f; metal; solid; and 178.5.” Group 5 contains “73; tantalum; T a; metal; solid; and 180.9.” Group 6 contains “74; tungsten; W; metal; solid; and 183.8.” Group 7 contains “75; rhenium; R e; metal; solid; and 186.2.” Group 8 contains “76; osmium; O s; metal; solid; and 190.2.” Group 9 contains “77; iridium; I r; metal; solid; and 192.2.” Group 10 contains “78; platinum; P t; metal; solid; and 195.1.” Group 11 contains “79; gold; A u; metal; solid; and 197.0.” Group 12 contains “80; mercury; H g; metal; liquid; and 200.6.” Group 13 contains “81; thallium; T l; metal; solid; and 204.4.” Group 14 contains “82; lead; P b; metal; solid; and 207.2.” Group 15 contains “83; bismuth; B i; metal; solid; and 209.0.” Group 16 contains “84; polonium; P o; metal; solid; and 209.” Group 17 contains “85; astatine; A t; metalloid; solid; and 210.” Group 18 contains “86; radon; R n; nonmetal; gas; and 222.” Period 7, group 1 contains “87; francium; F r; metal; solid; and 223.” Group 2 contains “88; radium; R a; metal; solid; and 226.” Group 3 breaks the pattern much like what occurs in period 6. A large arrow points from the box in period 7, group 3 to a special row containing the elements with atomic numbers ranging from 89-103, just below the row which contains atomic numbers 57-71. In sequential order by atomic number, the first box in this row contains “89; actinium; A c; metal; solid; and 227.” To its right, the next is “90; thorium; T h; metal; solid; and 232.0.” Next is “91; protactinium; P a; metal; solid; and 231.0.” Next is “92; uranium; U; metal; solid; and 238.0.” Next is “93; neptunium; N p; metal; solid; and N p.” Next is “94; plutonium; P u; metal; solid; and 244.” Next is “95; americium; A m; metal; solid; and 243.” Next is “96; curium; C m; metal; solid; and 247.” Next is “97; berkelium; B k; metal; solid; and 247.” Next is “98; californium; C f; metal; solid; and 251.” Next is “99; einsteinium; E s; metal; solid; and 252.” Next is “100; fermium; F m; metal; solid; and 257.” Next is “101; mendelevium; M d; metal; solid; and 258.” Next is “102; nobelium; N o; metal; solid; and 259.” The last in this special row is “103; lawrencium; L r; metal; solid; and 262.” Continuing in period 7, group 4 contains “104; rutherfordium; R f; metal; solid; and 267.” Group 5 contains “105; dubnium; D b; metal; solid; and 270.” Group 6 contains “106; seaborgium; S g; metal; solid; and 271.” Group 7 contains “107; bohrium; B h; metal; solid; and 270.” Group 8 contains “108; hassium; H s; metal; solid; and 277.” Group 9 contains “109; meitnerium; M t; not indicated; solid; and 276.” Group 10 contains “110; darmstadtium; D s; not indicated; solid; and 281.” Group 11 contains “111; roentgenium; R g; not indicated; solid; and 282.” Group 12 contains “112; copernicium; C n; metal; liquid; and 285.” Group 13 contains “113; ununtrium; U u t; not indicated; solid; and 285.” Group 14 contains “114; flerovium; F l; not indicated; solid; and 289.” Group 15 contains “115; ununpentium; U u p; not indicated; solid; and 288.” Group 16 contains “116; livermorium; L v; not indicated; solid; and 293.” Group 17 contains “117; ununseptium; U u s; not indicated; solid; and 294.” Group 18 contains “118; ununoctium; U u o; not indicated; solid; and 294.”
Figure 2. Elements in the periodic table are organized according to their properties.

The elements can also be classified into the main-group elements (or representative elements) in the columns labeled 1, 2, and 13–18; the transition metals in the columns labeled 3–12. The elements can be subdivided further by more specific properties, such as the composition of the compounds they form. For example, the elements in group 1 (the first column) form compounds that consist of one atom of the element and one atom of hydrogen. These elements (except hydrogen) are known as alkali metals, and they all have similar chemical properties. The elements in group 2 (the second column) form compounds consisting of one atom of the element and two atoms of hydrogen: These are called alkaline earth metals, with similar properties among members of that group. Other groups with specific names are the pnictogens (group 15), chalcogens (group 16), halogens (group 17), and the noble gases (group 18, also known as inert gases). Hydrogen is a unique, nonmetallic element with properties similar to both group 1 and group 17 elements. For that reason, hydrogen sometimes is shown at the top of both groups, and sometimes sits by itself.

This diagram combines the groups and periods of the periodic table based on their similar properties. Group 1 contains the alkali metals, group 2 contains the earth alkaline metals, group 15 contains the pnictogens, group 16 contains the chalcogens, group 17 contains the halogens and group 18 contains the noble gases. The main group elements consist of groups 1, 2, and 12 through 18. Therefore, most of the transition metals, which are contained in groups 3 through 11, are not main group elements. The lanthanides and actinides are called out at the bottom of the periodic table.
Figure 3. The periodic table organizes elements with similar properties into groups.

Most metals occur as solids. An exception to this is mercury (Hg) which occurs as liquid. Noble gases, in the far right column, occur naturally as gas.  Many non-metals occur as multi-atomic molecules:  (i.e. more than one atom together is the natural state):  H2, O2, N2, F2, Cl2 which are all gases, S8, P4, Se8, Iwhich are all solids and Br2 which is a liquid.

 

Click on this link for an interactive periodic table, which you can use to explore the properties of the elements (includes podcasts and videos of each element). You may also want to try this one that shows photos of all the elements.

Example 1

For the following elements, list their symbol, their natural state, and classify them as metal, nonmetal or metalloid:

      a)  magnesium        b)  silver          c)  uranium        d)  chlorine

 

Solution

a)   Magnesium = Mg, occurs as a solid, is a metal (main group metal)

b)   Silver = Ag, occurs as a solid, is a metal (transition metal)

c)   Uranium = U, occurs as a solid, is a metal (inner transition metal)

d)   Chlorine = Cl, occurs as Cl2in the gas state, is a nonmetal

In studying the periodic table, you might have noticed that some elements have their atomic mass given in square brackets. This is done for elements that consist entirely of unstable, radioactive isotopes. An average atomic weight cannot be determined for these elements because their radioisotopes may vary significantly in relative abundance, depending on the source, or may not even exist in nature. The number in square brackets is the atomic mass number (and approximate atomic mass) of the most stable isotope of that element.

Periodic tables also can be found with slightly differing average atomic masses for particular elements. This can be due to variations in isotopic abundances around the world; as a new source is found, abundance calculations can be shifted if the new supply has a non-matching isotopic distribution.

Key Concepts and Summary

The discovery of the periodic recurrence of similar properties among the elements led to the formulation of the periodic table, in which the relationships between elements are laid out in a graphical format. Elements in the same group of the periodic table have similar chemical properties. Elements can be classified in a variety of ways, including the large groups named metals, nonmetals, and metalloids.

Review-Refresh, Extend

Review-Refresh

1. Using the periodic table, classify each of the following elements as a metal or a nonmetal, and then further classify each as a main-group (representative) element or transition metal

a) bromine      b) strontium      c) neon

d) gold            e) rhodium        f) sulfur

g) carbon         h) potassium

2. Identify the group and row numbers for each of the elements:

a) uranium      b) bromine      c) strontium      d) neon

e) gold           g) rhodium        h) sulfur

Extend

  1. A fellow student says casually to you, “Why don’t they just keep it simpler by making the periodic table a rectangle?” Craft an answer to them that they will understand, even if they are not in chemistry class.

Answers to Review-Refresh

1. a) nonmetal, representative element  b) metal, representative element;  c) nonmetal, representative element;  d) metal, transition metal;  e) metal, transition metal;  f) nonmetal, representative element;  g) nonmetal, representative element;  h) metal, representative element

2.

a) Bromine Row 4 Group 17     b) Strontium Row 5 Group 2      c) Neon Row 2 Group 18

d) Gold Row 6 Group 11          e) Rhodium Row 5 Group 9        f) Sulfur Row 3 Group 16

Glossary

actinide: inner transition metal in the bottom of the bottom two rows of the periodic table

alkali metal: element in group 1

alkaline earth metal: element in group 2

chalcogen: element in group 16

group: vertical column of the periodic table

halogen: element in group 17

inert gas: (also, noble gas) element in group 18

inner transition metal: (also, lanthanide or actinide) element in the bottom two rows; if in the first row, also called lanthanide, or if in the second row, also called actinide

lanthanide: inner transition metal in the top of the bottom two rows of the periodic table

main-group element: (also, representative element) element in columns 1, 2, and 12–18

metal: element that is shiny, malleable, good conductor of heat and electricity

metalloid: element that conducts heat and electricity moderately well, and possesses some properties of metals and some properties of nonmetals

noble gas: (also, inert gas) element in group 18

nonmetal: element that appears dull, poor conductor of heat and electricity

period: (also, series) horizontal row of the periodic table

periodic law: properties of the elements are periodic function of their atomic numbers.

periodic table: table of the elements that places elements with similar chemical properties close together

pnictogen: element in group 15

representative element: (also, main-group element) element in columns 1, 2, and 12–18

series: (also, period) horizontal row of the period table

transition metal: element in columns 3–11

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Introduction to Chemistry Copyright © 2020 by Carol Higginbotham is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book