Kardiovaskuläres Manual 8. Auflage 2023

Endotheliale Plaque-Instabilität Inflammation Oxidation Dysfunktion und Thrombus Nach: Libby P. Circulation 2001;104:365-372; Ross R. N Engl J Med 1999;340:115-126.

Eine Dienstleistung des Kantonsspitals St.Gallen

Herausgeber:

Prof. Dr. Hans Rickli, Chefarzt Klinik für Kardiologie, Kantonsspital St.Gallen Unter Mitarbeit von:

Dr. Nina Eppinger, Kantonsspital St.Gallen

Kardiovaskuläres Manual 2023

Autorenteam Kantonsspital St.Gallen

<u>Kardiovaskuläres Manual 2023</u> Copyright © Autorenteam Kantonsspital St.Gallen. Alle Rechte vorbehalten.

Inhalt

Einleitung	/
Reanimation	9
Arterielle Hypertonie	15
Diabetes mellitus	27
Hyperlipidämien	35
Rauchstopp	55
Schlafbezogene Atmungsstörungen	59
Chronische Niereninsuffizienz	65
Prävention der KM assoziierten Niereninsuffizienz	71
Kontrastmittel-Allergie und Iod-Expositionsprophylaxe	75
Prä- und perioperatives Management bei nicht-kardialen Operationen	77
Thromboembolieprophylaxe in der Medizin	83
Periinterventionelles Management unter gerinnungshemmender Medikation; Vorgehen bei lebensbedrohlicher Blutung unter NOAK	85
Akutes Koronarsyndrom (ACS)	95
Chronisches Koronarsyndrom - Diagnostik und Therapie	109
Tiefe Venenthrombose und Lungenembolie	127
Synkope resp. TLOC	151
Ischämischer Schlaganfall und Transitorische ischämische Attacke (TIA)	163
Intrakranielle Blutung	179
Akutes Aortensyndrom	187
Bauchaortenaneurysma (BAA)	193
Periphere arterielle Verschlusskrankheit (PAVK)	201
Pulmonale Hypertonie	209
Herzinsuffizienz	225
Vorhofflimmern	247
Supraventrikuläre Rhythmusstörungen (SVT)	259
Schrittmachertherapie	267
Kammertachykardien	271
ICD und CRT	277

Endokarditis	283
Valvuläre Herzerkrankungen	289
Management Perikarderguss	313
Ambulante kardiale Rehabilitation (AKR) und Prävention	315
Kardio-Onkologie	319
Psychokardiologie	323
Fahreignungsbeurteilung bei kardiologischen Patienten	327

Einleitung

Liebe Kolleginnen und Kollegen

Die mittlerweile 8. Auflage des bewährten und beliebten Kardiovaskulären Manuals liegt vor Ihnen, unter Berücksichtigung der zwischenzeitlich publizierten internationalen Leitlinien.

Die Autoren freuen sich Ihnen auch in diesem Jahr wieder ein Manual an und in die Hand geben zu können, das Ihnen auch in hektischen Situationen als praktisches Nachschlagewerk dient und Ihnen hoffentlich den Arbeitsalltag erleichtert.

Die aktuellste Auflage kann von der Website der Kardiologie (www.kssg.ch/kardiologie) heruntergeladen werden. Dank grosszügiger Unterstützung verschiedenster Sponsoren kann das Kardiovaskuläre Manual an alle interessierten Ärztinnen und Ärzte auch wieder als Printversion abgegeben werden.

Im Namen der Autorenschaft

Prof. Dr. Hans Rickli

Chefarzt Klinik für Kardiologie, Kantonsspital St.Gallen

www.kssg.ch/kardiologie kardiologie@kssg.ch

Reanimation

Klinische Essentials

Entscheidende Faktoren

- Erkennen der Notwendigkeit von Reanimationsmassnahmen
- Sofortige qualitativ hochwertige Thoraxkompressionen ohne unnötige Unterbrechungen
- · Frühzeitige Defibrillation
- · Suffiziente Ventilation und Oxygenierung bei länger dauerndem Kreislaufstillstand

Thoraxkompression

- Frequenz mind, 100/Min, (nicht mehr als 120/Min,)
- Bei Erwachsenen: mind, 5 cm und möglichst nicht tiefer als 6 cm Kompressionstiefe, bei Kindern und Säuglingen: mind. 1/3 AP-Durchmesser (Kinder ca. 5 cm, Säuglinge ca. 4 cm)
- · Vollständige Entlastung des Brustkorbs ermöglichen
- Unterbrechungen der Thoraxkompressionen minimieren (< 10 Sek.)
- · Zweihelfer-Reanimation: alle 2 Min. mit Thoraxkompressionen abwechseln

Ventilation

- 1 Sek. Inspirationsphase; Beatmungsdruck < 30 cm H₂O halten (vermeiden der Mageninsufflation)
- Gesicherter Atemweg:
 - Bei Erwachsenen 1 Beatmung alle 6 Sekunden (10/Min.) und
 - Bei Kindern 1 Beatmung alle 2 bis 3 Sekunden (20-30/Min.)
- ETCO₂ > 1.5 kPa
- · Auf sichtbare Thoraxhebung achten

Defibrillation

- · Während der Ladephase des Defibrillators Thoraxkompression weiterführen
- · Nach Defibrillation kein Rhythmus-/Puls-Check, unverzüglich mit Thoraxkompression weiterfahren

BLS-AED Massnahmen

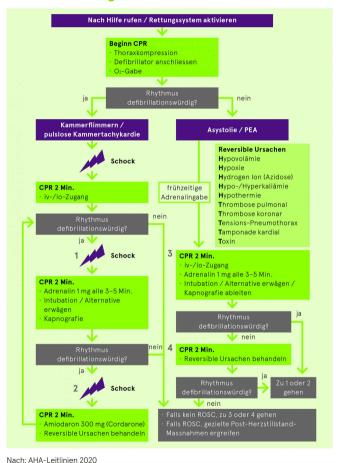
Massnahmen	Details		
	Erwachsene	Kinder / Säuglinge ab 1 Monat	
Diagnostik	Keine Bewegung / Reaktion Keine Atmung oder Schnappatmung Kein Puls palpabel (max. 10 Sek. prüfen)		
Kompressionen			
· Frequenz	Mind. 100/Min. und ma	x. 120/Min.	
· Tiefe	Mind. 5-6 cm	· Kinder ~ 5 cm · Säuglinge ~ 4 cm	
· Entlastung	Komplette Thoraxentlastung nach der Kompression ermöglichen		
· Wechsel	Falls mehr als 1 Helfer, alle 2 Min. Wechsel des Komprimierenden		
· Unterbrechungen	Keine unnötigen Unterbrechungen resp. auf < 10 Sek. begrenzen		
Atemwege	Kopf überstrecken; Kinn anheben; bei Verdacht auf Trauma → Esmarchscher Handgriff		
Verhältnis Kompression – Beatmung	30:2	30:2 (1 Helfer)	
Beatmung bei Intubierten / alternativen Atemwegen	1 Beatmung alle 6 Sek. (10/Min.)	1 Beatmung alle 2 bis 3 Sek. (20–30/Min.)	
Defibrillation	AED so früh wie möglich einsetzen. Unterbrechungen vor Stromabgabe auf Minimum begrenzen. Nach Schockabgabe sofort mit Thoraxkompressionen weiterfahren.		

Nach: AHA-Leitlinien 2020

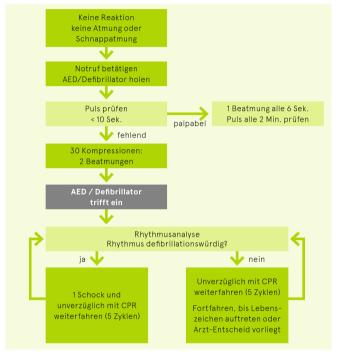
iv-Zugang/Timing Medikamente

- Falls Schwierigkeiten mit iv-Zugang auf intra-ossären (io)-Zugang wechseln
- · Adrenalingabe: 1 mg alle 3 bis 5 Minuten. Bei initialer PEA oder Asystolie erfolgt die Adrenalingabe so früh wie möglich
- · Antiarrhythmika-Gabe:
 - Amiodaron (Cordarone): 300 mg als Bolus nach dritter Defibrillation, Repetition nach fünfter Defibrillation mit 150 mg Bolus oder
 - Lidocain: 1-1.5 mg/kgKG nach dritter Defibrillation, Repetition nach fünfter Defibrillation mit 0.5-0.75 mg/kgKG
- Kein Unterbruch der Thoraxkompression für das Legen des iv-Zugangs und der Medikamentengabe

Massnahmen nach ROSC (Return of Spontaneous Circulation) Mit Wiedererlangen des spontanen Kreislaufs sind folgende Massnahmen zu ergreifen:


- Oxygenierung und Ventilation optimieren (SaO₂ ≥ 94%), Intubation, keine Hyperventilation (Normokapnie), Kapnografie-Monitoring
- · Schockbehandlung: iv Flüssigkeits-Bolus, Vasopressoren, Therapie reversibler Ursachen
- 12-Ableitungs-EKG (bei STEMI → Herz-Katheterlabor)
- eFAST-Kontrolle (Verletzungsfolgen der Reanimation)
- Temperatur nicht über 36 °C ansteigen lassen

Indikationen für ECMO (eCPR)


Herzstillstand ohne ROSC > 10-20 Min. mit folgenden Bedingungen:

- Intoxikationen, Lebenszeichen unter CPR (exkl. Schnappatmung)
- No-Flow Time < 5 Min. oder Low-Flow Time < 60 Min. mit ETCO2 ≥ 1.33 kPa bei VF, VT (Kammerflimmern, Kammertachykardie) bzw. tachykarder PEA
- Hypothermie, d.h. < 32 °C (Kalium ≤ 8 mmol/l)

Herzstillstand-Algorithmus (Erwachsene)

BLS-AED-Algorithmus für professionelle Helfer

Nach: AHA-Richtlinien 2020

Kriterien für den Abbruch der Reanimation (allowance of natural death = AND)

Reagiert der Patient nach korrekten Reanimations-Massnahmen (Defibrillation/Adrenalin) nicht und liegen keine unmittelbar therapierbaren Ursachen vor, werden aktiv folgende Kriterien für den Abbruch geprüft:

- · Suchen und Auffinden einer Patientenverfügung
- Kontaktaufnahme mit Hausarzt/Vorbetreuenden und Angehörigen während laufender Reanimation
- Konsultation vorbestehender medizinischer Akten
- · Asystolie während 10 Min. trotz lege artis durchgeführtem ACLS
- Fokussierte Echokardiografie zeigt keine mechanische Aktivität ± Spontankontrast
- No Flow Time > 5 Min. oder Low Flow Time ≥ 60 Min.
- · ETCO2 permanent < 1.5 kPa

Quellen/Links

- · www.cpr-ecc.org
- · www.rea2000.ch
- · www.resuscitation.ch

Dr. Elke Schmidt

Dr. Gian-Reto Kleger

Helge Schneider

Dr. Daniel Weilenmann

Arterielle Hypertonie

Definitionen und Diagnose der arteriellen Hypertonie

Die Hypertonie-Diagnose kann gestellt werden bei wiederholt erhöhten Praxisblutdruck-Messungen bei mehr als einem Besuch, oder bei Grad 3 Hypertonie

ODER

bei erhöhten praxisunabhängigen Blutdruck-Messungen (ABPM = ambulatory blood pressure monitoring und/oder HBPM = home blood pressure monitoring).

Zentral ist die korrekte Blutdruckmessung mit dem richtigen Equipment (validiertes Blutdruckmessgerät, korrekte Manschettengrösse).

Blutdruckklassen	Blutdruck (mmHg)
Praxisblutdruck ^a	≥ 140 und/oder ≥ 90
Langzeitblutdruck (ABPM) - Tagüber (oder wach) Mittelwert - Nächtlich (oder schlafend) Mittelwert - 24 Stunden Mittelwert	≥ 135 und/oder ≥ 85 ≥ 120 und/oder ≥ 70 ≥ 130 und/oder ≥ 80
Häuslicher Blutdruck (HBPM) Mittelwert	≥ 135 und/oder ≥ 85

Tabelle 1: Hypertonie-Definitionen nach Praxis-, Langzeit- und häuslichen Blutdruck-Werten

Sonderfälle

- Weisskittelhypertonie: erhöhter Blutdruck nur in der Praxis
- Maskierte Hypertonie: erhöhter Blutdruck nur ausserhalb der Praxis
- → Diese Sonderfälle brauchen eine Blutdruckmessung ausserhalb der Klinik

^a Bezieht sich auf konventionellen Praxisblutdruck, nicht auf unbeaufsichtigten Praxisblutdruck («unattended» office

Kategorie ^a	Blutdruck (mmHg)
Optimal	< 120 und/oder < 80
Normal	120-129 und 80-84
Hochnomal	130-129 und/oder 85/89
Hypertonie Grad 1	140-159 und/oder 90-99
Hypertonie Grad 2	160-179 und/oder 100-109
Hypertonie Grad 3	≥ 180 und/oder ≥ 110
Isolierte systolische Hypertonie ^b	≥ 140 und < 90

Tabelle 2: Klassifikation des Blutdrucks und Definition der Hypertonie-Grade

Ursache der arteriellen Hypertonie

Primäre (essentielle) Hypertonie (keine Ursache fassbar)	92-96%
Sekundäre Hypertonieformen Renal-parenchymatös Renovaskulär Endokrin Alle anderen	4-8% 3-5% 0.5-1% 0.5-1% < 0.5%
Heilbare Hypertonieformen	1–2%

Blutdruckmessung

Praxis-Blutdruckmessung

- Beguem sitzend nach ≥ 5 Minuten Ruhe messen
- Validierte Blutdruckmessgeräte verwenden
- Korrekte Manschette wählen: Manschettenbreite an Oberarmumfang anpassen (≥ 33 cm → breite Manschette)
- Drei Messungen im Abstand von 1-2 Minuten (zusätzliche Messungen bei Abweichen der ersten beiden Messungen um >10mmHg). Der Blutdruck wird als Durchschnitt der letzten beiden Messungen aufgezeichnet
- Stehend (nach 1 und 3 Min., orthostatische Hypotonie ausschliessen)
- Erstuntersuchung: an beiden Armen messen (Seitendifferenz ausschl.)

^a Die Blutdruck-Kategorie ist definiert gemäss klinischem Blutdruck im Sitzen und durch den jeweils höchsten Blutdruckwert, sei er systolisch oder diastolisch.

b Die isolierte systolische Hypertonie wird in Grad 1, 2 oder 3 eingestuft, gemäss den systolischen Blutdruck-Werten in den angegebenen Bereichen. Für alle Altersstufen ab 16 Jahren wird dieselbe Klassifikation genutzt.

Heimblutdruckmessung (HBPM, home blood pressure monitoring)

- halbautomatisches, validiertes Blutdruckmessgerät verwenden. Oberarmmanschette gegenüber Handgelenkmessgeräten bevorzugt
- · 7 Tage hintereinander, jeweils morgens und abends messen und Protokoll führen
- Jede Messung beinhaltet zwei Messungen im Abstand von einer Minute
- · Vor jeder Messung 5minütige Ruheperiode, ruhiges Zimmer, Arm mit der Manschette unterstützt und Rücken angelehnt

Indikationen für eine Langzeitblutdruckmessung (ABPM ambulatory blood pressure monitoring)

- Zustände, bei denen die Weisskittelhypertonie häufiger vorkommt, z.B. Hypertonie Grad 1 bei der Praxis-Blutdruckmessung oder deutlich erhöhte Praxis-Blutdruckmessungen bei fehlenden Endorganschäden
- Zustände, bei denen die maskierte Hypertonie häufiger vorkommt. z.B. hochnormaler Praxisblutdruck oder normaler Praxisblutdruck bei Patienten mit Endoraganschaden oder hohem kardiovaskulärem Gesamtrisiko oder Anstrengungs-induzierter Hypertonie
- Lageabhängige und postprandiale Hypotonie
- Abklärung einer resistenten Hypertonie
- Überprüfung der Blutdruckkontrolle, insbesondere bei behandelten Patienten mit höherem Risiko
- Bei grosser Streuung der Praxisblutdruckwerte
- Abklärung von Symptomen, die auf eine Hypotonie hinweisen
- Spezifische Indikationen für eine ABPM anstelle einer Heimblutdruckmessung: Bewertung der nächtlichen Blutdruckwerte und des Dipping-Status (z.B. Verdacht auf nächtliche Hypertonie, so wie bei Schlafapnoe, chronischer Niereninsuffizienz, Diabetes, endokriner Hypertonie oder Dysautonomie)

Anamnese

Blutdruck- und Gewichtsverlauf, Bei Frauen: Hypertonie in der Schwangerschaft / Präeklampsie?

- Kardiovaskuläre Risikofaktoren inkl. Risiko-modifizierende Lebensstil-Faktoren (Rauchen, Alkoholkonsum, körperliche Aktivität/ Sport, Essgewohnheiten/Salzkonsum, «Stress», Lärm-/Zeitbelastung)
- · Etablierte kardiovaskuläre oder Nierenkrankheit oder Hinweise hierauf: Angina pectoris. Claudicatio intermittens. Herzinsuffizienz-Symptome, Durst, Polyurie etc.
- Bereits versuchte Antihypertensiva / Unverträglichkeiten von Antihypertensiva
- «Pressorische» Medikamente und Substanzen: Ovulationshemmer. NSAR, Steroide, Cyclosporin, Sympathomimetika, Nasentropfen, Erythropoietin, Anabolika, trizyklische Antidepressiva, Onkologika (Tyrosinkinasehemmer, VEGF-Blocker, Aromatase-Inhibitoren, SERMs m-TOR-Inhibitoren) Kokain Lakritze Süssholztee
- Hinweise auf sekundäre Hypertonieformen: Schnarchen/Tagesmüdigkeit, Palpitationen, Kopfschmerzen, Muskelkrämpfe etc.
- Familienanamnese: Hypertonie, Diabetes mellitus, Hyperlipidämie, Adipositas, Nierenerkrankungen, Koronare Herzkrankheit, zerebrovaskuläre Erkrankungen, peripher arterielle Verschlusskrankheit

Klinische Untersuchung

- Grösse, Gewicht, BMI
- Bauch- und Hüftumfang (stehend)
- · Augenfundus (ab Hypertonie 2. Grades oder bei zusätzlichem Diahetes mellitus)
- Schilddrüsenpalpation
- · Pulsstatus und Gefäss- und Herzauskultation (Strömungsgeräusche? Hinweise für Aortenisthmusstenose?)
- Abdominalpalpation (aortale Pulsationen? Vergrösserung der Nieren?)
- Hinweise auf sekundäre Hypertonie: Café-au-lait Flecken (Phäochromozytom), Zeichen für Cushing, Akromegalie oder Schilddrüsenfunktionsstörung

Laboruntersuchungen

Basisdiagnostik

Blut (* nüchtern)

- Blutbild (Polyzythämia vera?)
- Kalium (1º/2º Hyperaldosteronismus, Diuretika?)
- Kalzium (Hyperparathyreoidismus?)
- Kreatinin (Niereninsuffizienz?)
- Glukose* und HbA_{1c} (Metabolisches Syndrom, Diabetes mellitus?)
- Triglyzeride*, Gesamtcholesterin, LDL- und HDL-Cholesterin
- Harnsäure

Urin

- Status und Sediment
- Mikroalbuminurie (Spoturin: mg Albumin/mmol Kreatinin ≥ 3.4)

12-Ableitungs-EKG

Hinweise auf linksventrikuläre Hypertrophie (LVH)?

Erweiterte Diagnostik

- Echokardiografie (Gold-Standard für die Diagnose der LVH, Erfassung einer diastolischen/systolischen LV-Dysfunktion, Ausschluss Aortenisthmusstenose)
- 24h-Blutdruckmessung: grosszügige Indikationsstellung

Abklärungen bei Verdacht auf sekundäre Hypertonie

Nierenerkrankung

- Serum-Kreatinin, Kreatinin-Clearance resp. eGFR
- Urinsediment (Mikro-)Albuminurie/Proteinurie
- 24h-Urin und Nierensonografie in ausgewählten Fällen

Renovaskuläre Hypertonie

Dopplersonografie Nierenarterien oder andere Bildgebung bei

- Schwerer oder schwer einstellbarer Hypertonie
- Kreatinin-Anstieg (> ca. 30%) unter ACE-Hemmern oder Angiotensin-Rezeptor-Blocker
- · Abdominellem Strömungsgeräusch, generalisierter Arteriosklerose, akutem Lungenödem

Primärer Hyperaldosteronismus**

Aldosteron-Renin-Ratio (ARR) bei

- · Schwerer oder schwer einstellbarer Hypertonie oder
- Begleitender Hypokaliämie
- Cave: eingeschränkte Aussagekraft unter Antihypertensiva (ausser Kalziumantagonisten und Alpha-Blockern) und/oder Hypokaliämie
- Präanalytik: ca. 2 Stunden nach dem Aufstehen, sitzend nach einer 15 minütigen Ruhepause direktes Renin und Aldosteron bestimmen
- ARR > 60pmol/I/mU/I (Wert gilt nur fürs KSSG/ZLM) pathologisch:
 Ein Bestätigungstest sollte erwogen werden

Phäochromozytom**

Bei Kopfschmerzen, Schwitzen und Herzklopfen

- 24h-Urin auf Metanephrin und Normetanephrin (Urin ansäuern) und/oder
- Plasma-Metanephrin und -Normetanephrin (Abnahme nüchtern, nach 15-30 Liegen, Probe auf Eis)

Hyper-/Hypothyreose

TSH bei Symptomen, die mit einer Hypo- / oder Hyperthyreose vereinbar sind

Cushing**

Bei Mondgesicht, Rubeosis faciei, Striae rubrae, Stammfettsucht, easy bruising usw.

- Mitternachts-Speichelcortisol
- Freies Cortisol im 24h-Urin
- · Dexamethason-Hemmtest

** Allenfalls spezialärztliche Abklärung

Risikostratifizierung

Die Risikostratifizierung bezüglich kardiovaskulärem Gesamtrisiko richtet sich nach den AGLA oder ESC Risikoeinteilungen.

Für die Risikokalkulation relevante (sub)klinische Endorganschäden beinhalten:

- Klinische kardiovaskuläre Erkrankung (sehr hohes Risiko): Mvokardinfarkt/akutes Koronarsvndrom, koronare oder andere arterielle Revaskularisierung, Schlaganfall/TIA, Aortenaneurysma, symptomatische PAVK
- Zweifelsfrei in der Bildgebung dokumentierte kardiovaskuläre Erkrankung (sehr hohes Risiko): signifikante Plaques (d.h. >=50% Stenose) in Angiogramm oder Sonografie
- Diabetes mellitus mit Endorganschäden oder einem Hauptrisikofaktor wie Hypertonie Grad 3 oder Hypercholesterinämie (sehr hohes Risiko): Die meisten anderen Patienten mit Diabetes mellitus (hohes Risiko)
- Schwere Niereninsuffizienz (eGFR <30ml/min/1.73m²) (sehr hohes Risiko): Mittelschwere Niereninsuffizienz (eGFR 30-59ml/min/ 1.73m²) (hohes Risiko)
- Deutliche Erhöhung eines einzelnen Risikofaktors (hohes Risiko): Cholesterin 8mmol/I, Hypertonie Grad 3
- Hypertensive Herzkrankheit (LVH) (hohes Risiko)
- Arterielle Hypertonie Grad 2 (moderates Risiko)

Patienten, die oben genannte Faktoren nicht erfüllen: Risikoberechnung nach AGLA-Score oder SCORE-Risikoscore

Beachte auch potenzielle Risikomodifikatoren: Koronarkalk, Intima-Media-Dicke/Plaques, erhöhte Pulswellengeschwindigkeit/Gefässsteifigkeit, pathologischer Ankle brachial index, sozioökonomischer Hintergrund (inkl. «Stress»). Umgebungs-Verunreinigungen Lärmbelastung), Gebrechlichkeit, Körpergewicht (Übergewicht, Adipositas), und -form (Bauchumfang)

Behandlung

Änderung des Lebensstils («lifestyle modifications»)

Tabakahstinenz

- Zurückhaltung mit Alkohol (♂ max. 2.5dl Wein oder 5dl Bier/Tag, ♀ max. 1.25dl Wein oder 2.5dl Bier/Tag)
- · Ernährung «salzarm», reich an Früchten und Gemüse
- Gewichtskontrolle/-reduktion. Ziel: BMI 20-25kg/m², Taillenumfang <94cm bei Männern und <80cm bei Frauen
- Regelmässiges aerobes Training: Marschieren, Joggen, Velofahren, Schwimmen, Langlaufen usw. (mind. 30 Min. an 5–7 Tagen/Woche)
- → Diese Massnahmen begleiten jede Pharmakotherapie.

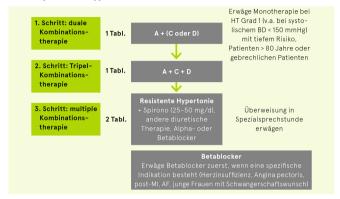
Pharmakotherapie

Interventionsschwelle für eine medikamentöse Behandlung:

≥ 140/≥ 90 mmHg (im Alter ≥ 80 Jahre: ≥ 160/≥ 90 mmHg)

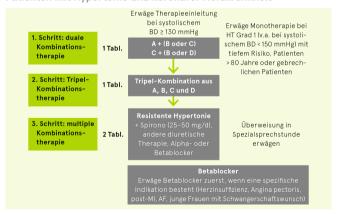
Bei Endorganschaden, hohem kardiovaskulärem Risiko oder BD ≥ 160/ ≥ 100 mmHg umgehender Behandlungsbeginn, sonst wenn Blutdruck-Ziel nach 3 Monaten konsequenter Lifestyle-Modifikation nicht erreicht wird.

Bei manifester kardiovaskulärer Erkrankung oder chronischer Niereninsuffizienz sollte sogar schon bei hoch-normalem Blutdruck eine medikamentöse Blutdrucksenkung in Erwägung gezogen werden.

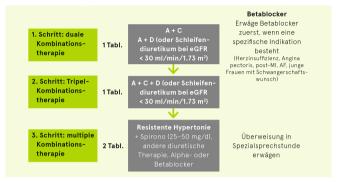

Behandlungsziel: Generell: <140/<90 mmHg

- Ein diastolischer Zielwert von < 80 mmHg sollte bei allen Patienten (unabhängig von Alter/Komorbiditäten) in Betracht gezogen werden.
- Bei jüngeren Patienten (< 65 Jahre) sollte ein Zielwert von < 130/80 mmHg erwogen werden, falls dies gut toleriert wird.
- Eine Blutdrucksenkung auf < 120/70 mmHg soll vermieden werden.

Wahl der Medikamente:


Eine frühe Kombinationstherapie wird empfohlen, vorzugsweise in Form einer Fix-Kombination.

Unkomplizierte Hypertonie


A: ACE-Hemmer oder Angiotensin-Rezeptor-Blocker: AF: Vorhofflimmern: C: Kalziumkanalblocker; D: Thiazid-like oder Thiazid-Diuretikum; HT: Hypertonie; MI: Myokardinfarkt; Spirono: Spironolacton

Patienten mit Hypertonie und koronarer Herzkrankheit

A: ACE-Hemmer oder Angiotensin-Rezeptor-Blocker; AF: Vorhofflimmern; B: Betablocker; C: Kalziumkanalblocker; D: Thiazid-like oder Thiazid-Diuretikum; HT: Hypertonie; MI: Myokardinfarkt; Spirono: Spironolacton

Patienten mit Hypertonie und chronischer Niereninsuffizienz

A: ACE-Hemmer oder Angiotensin-Rezeptor-Blocker; AF: Vorhofflimmern; C: Kalziumkanalblocker; D: Thiazid-like oder Thiazid-Diuretikum; MI: Myokardinfarkt; Spirono: Spironolacton

Therapieresistenz

Eine renale Sympathikusdenervation kann in ausgewählten Fällen in Erwägung gezogen werden.

Hypertensive Krise

Hypertensive Gefahrensituation (urgency)

- Exzessive BD-Erhöhung ohne oder mit geringen Symptomen (Epistaxis, Schwindel, Kopfschmerzen), aber ohne akuten Endorganschaden
- · Häufig bei bekannten Hypertonikern. Wenn Neudiagnose: an sekundäre Hypertonieformen denken!
- Auslösende Faktoren eruieren und wenn möglich korrigieren: z.B. Schmerz, psychischer «Stress» oder Panik, Medikamenten-Malcompliance, Substanzkonsum (Metamphetamine, Kokain) etc.
- → BD-Senkung innert weniger Tage, meist po und ambulant möglich. Ausbau und Wahl der Medikamente entsprechend den oben dargestellten therapeutischen Algorithmen.

Hypertensiver Notfall (emergency)

Exzessive BD-Erhöhung mit Symptomen (z.B. Thoraxschmerzen, Dyspnoe, neurologischem Defizit) und/oder akutem Endorganschaden:

- Zerebraler Infarkt, intrazerebrale oder subarachnoidale Blutung
- Hypertensive Enzephalopathie (Kopfschmerzen, Verwirrung, Sehstörung, Krampfanfall, Bewusstseinsstörung bis Koma)
- Lungenödem
- Akutes Koronarsvndrom
- Aortendissektion
- · Fundusblutungen, Papillenödem
- · Präeklampsie, Eklampsie
- Blutdruck in der Schwangerschaft ≥ 160/110 mmHg
- → Notfallmässige Hospitalisation! Blutdruckziel und Wahl der Medikation (meist intravenös) gemäss dem Endorganschaden.

Cave: zu schnelle oder zu exzessive BD-Senkung mit der Gefahr von Hypoperfusion (zerebral, koronar, renal)!

Dr. Dr. Roman Brenner

Dr. Carola Fhl.

Diabetes mellitus

Definition

- Gruppe von Stoffwechselerkrankungen, die durch eine Hyperglykämie charakterisiert sind
- Die chronische Hyperglykämie führt zu Langzeitschäden, Funktionsstörungen des Körpers und Versagen von Organen; insbesondere an Augen, Nieren, Füssen, Herz und Gefässen.

Diagnose und Klassifikation

Diagnostische Richtwerte

	Nüchtern-Plasmag- lukose	Oraler Glukosetole- ranztest 2-StdWert	HbA _{1c}
Normal	< 5.6 mmol/l	< 7.8 mmol/l	< 5.7%
Gestörte Nüchtern- Glukose	≥ 5.6 und < 7.0 mmol/l	-	-
Verminderte Gluko- setoleranz	-	≥ 7.8 und < 11.1 mmol/l	-
Diabetes mellitus	≥ 7.0 mmol/l	≥ 11.1 mmol/l	≥ 6.5%

Tbl. 1: Nach: American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care, 2021;44:Suppl, 1:S15-S33

Kriterien für die Diagnose eines Diabetes mellitus

- Plasmaglukose (venös) zu einem beliebigen Zeitpunkt ≥ 11.1 mmol/l und klinische Symptome oder
- Nüchtern-Plasmaglukose (venös) ≥ 7.0 mmol/l oder
- Plasmaglukose (venös) 2 Stunden nach oGTT (75 g Glukose po) ≥ 11.1 mmol/Loder
- HbA_{1c} ≥ 6.5%

Wichtig

Bestätigung des pathologischen Resultates durch einen weiteren anderen Test in der gleichen Blutentnahme oder an einem anderen Tag. Ein erhöhter HbA_{1c}-Wert soll durch die Bestimmung eines Nüchtern-Plasmaglukose-Wertes oder mittels oGTT überprüft werden. Bestimmungen sind mit Laborgeräten auszuführen (i.d.R. venöse Blutentnahme).

Messungen mit Blutzucker-Selbstmessgeräten sind für die Diagnose unzulässig! Methode zur HbA_{1c}-Bestimmung muss NGSP-zertifiziert und gemäss dem DCCT-Assay standardisiert sein.

Klassifikation des Diabetes mellitus

- Diabetes mellitus Typ 1 (Pathogenese: autoimmun bedingte Beta-Zellzerstörung mit konsekutivem, absolutem Insulinmangel)
- Diabetes mellitus Typ 2 (Pathogenese: progredienter Insulinsekretionsdefekt und Insulinresistenz)
- Spezifische Diabetestypen
 - Genetischer Defekt der Beta-Zellfunktion (z.B. Maturity Onset Diabetes of the Young [MODY]: mitochondrialer Diabetes)
 - · Genetischer Defekt in der Insulinwirkung (z.B. Typ-A-Insulinresistenz, Insulinrezeptordefekt, lipoatropher Diabetes)
 - Erkrankungen des exokrinen Pankreas (z.B. Pankreatitis, Neoplasien, zystische Fibrose, Hämochromatose)
 - Endokrinopathien (z.B. Akromegalie, Cushing-Syndrom, Phäochromozvtom)
 - Medikamenten-induziert (z.B. Steroide, Immunsuppressiva bei Transplantationen, antiretrovirale Therapie)
 - Infektionen (z.B. kongenitale Röteln, Masern, Coxsackievirus, Cytomegalievirus)
 - Seltene Formen von immunogenem Diabetes (z.B. Stiff-Man-Syndrom, Anti-Insulinrezeptor-Antikörper)
 - Andere genetische Syndrome, die mit Diabetes assoziiert sind (z.B. Trisomie 21, Klinefelter-Syndrom, Turner-Syndrom, myotone Dystrophie)
- Gestationsdiabetes (Definition: während der Schwangerschaft diagnostizierter Diabetes)

Screening nach Diabetes mellitus Typ 2

Risiko-Bestimmung bei asymptomatischen Erwachsenen

Zum primären Screening bzw. zur Risiko-Bestimmung für Diabetes mellitus Typ 2 bei asymptomatischen Erwachsenen wird der folgende adaptierte FINDRISC-Fragebogen empfohlen (Onlineversion abrufbar unter www.diabetesgesellschaft.ch/diabetes/risikotest):

			kte zusammen und ermitteln Sie seinen ach den jeweiligen Risiko-Kategorien.
1.	1. Alter □ bis 44 Jahre □ 45 bis 54 Jahre □ 55 bis 64 Jahre □ 55 Jahre und mehr		(0 Punkte) (2 Punkte) (3 Punkte) (4 Punkte)
2.	2. Body Mass Index (BMI) □ 18.5 bis 25 kg/m² (Normalgewicht) □ 25.0 bis 29.7 kg/m² (Übergewicht) □ über 30.0 kg/m² (Adipositas)		(0 Punkte) (2 Punkte) (3 Punkte)
3.	MÄNNER □ unter 94 cm □ 94 bis 102 cm	FRAUEN unter 80 cm	kt zw. unterster Rippe und Beckenkamm) (0 Punkte) (2 Punkte) (3 Punkte)
4.	Täglich mind. 30 Min. kö □ ja □ nein	rperliche Aktivität, sodass er	ausser Atem oder ins Schwitzen kommt (0 Punkte) (2 Punkte)
5.	Häufigkeit des Früchte- □ täglich □ nicht täglich	und Gemüse-Verzehrs	(0 Punkte) (1 Punkt)
6.	Längerfristig Medikamer □ ja □ nein	nteneinnahme gegen Hypert	onie (aktuell oder in der Vergangenheit) (2 Punkte) (0 Punkte)
7.	. Hohe Blutzuckerwerte in der Vergangenheit (z. B. bei Gesundheits-Checks, während der Schwangerschaft, während Akuterkrankungen) □ ja (5 Punkte) □ nein (0 Punkte)		
8.	Erstgradig Blutverwandt □ ja □ nein	te mit einer Diabetes-Diagno	se (2 Punkte) (0 Punkte)

Abb. 1: Diabetes Typ 2 Risiko-Test (adaptiert nach FINDRISC). Der Risiko-Test basiert auf dem FINDRISC (Lindstrom J. Tuomilehto J. Diabetes Care 2003;26(3):725-731) und wurde für die Schweiz anhand bisher unveröffentlichter Daten der CoLaus-Studie (Firmann M. et al. BMC Cardiovasc Disord 2008;8:6) geringfügig adaptiert.

Therapieziele

Allgemeine Empfehlungen - Therapiegrundsätze

Eine anhaltend gute Blutzuckerkontrolle verhindert bzw. verzögert das Auftreten oder das Fortschreiten von Diabetes-assoziierten Spätkomplikationen. Die Therapie und die Therapieziele sollten immer individuell mit dem Patienten und dessen Umfeld besprochen und festgelegt werden. Insbesondere folgende Faktoren sollten beachtet werden:

- Diabetesdauer
- Alter des Patienten
- Co-Morbiditäten
- · Lebenserwartung des Patienten
- Bekannte kardiovaskuläre oder mikrovaskuläre Erkrankung (insbesondere Niereninsuffizienz)
- · Hypoglykämie-Risiko
- · Schwangerschaft oder Schwangerschaftswunsch

Blutzuckersenkende Medikamente und deren Kombinationen sind primär auf der Grundlage des individuellen HbA_{1c}-Wertes, vorhandener Kontraindikationen, des Effekts aufs Körpergewicht, dem Vorliegen einer kardiovaskulären Erkrankung (inklusive Herzinsuffizienz) oder einer Nephropathie auszuwählen. Ebenfalls sind spezifische Nebenwirkungen und Therapiekosten der blutzuckersenkenden Medikamente zu berücksichtigen (vgl. «Therapiewahl für die Behandlung des Diabetes mellitus Typ 2» <u>Seite 33</u>).

Glykämie-Zielwerte

Ein HbA_{1c}-Wert > 8% zeigt generell einen Handlungsbedarf an und legt die Einleitung einer Therapie oder einen Therapiewechsel nahe. Bei Patienten mit geringem Hypoglykämie-Risiko und neu bzw. kürzlich diagnostiziertem Diabetes mellitus sollten HbA_{1c}-Werte unter 6.5% angestrebt werden.

Bei älteren Patienten (> 70 Jahre) mit mehr als 10-jähriger Diabetesdauer, bekannten makrovaskulären Komplikationen, eingeschränkter Lebenserwartung und/oder vermehrter Hypoglykämie-Neigung sollte ein HbA_{1c}-Wert zwischen 7% bis max. 8% angestrebt werden (siehe Tab. 2 «Therapeutische Richtwerte» und Abb. 2 «Individuelle Zielwerte»).

Therapeutische Richtwerte

	Einstellung gut	Einstellung akzeptabel	Einstellung ungenügend** Anpassung der Behandlung nötig
Nüchtern-Glukose Kapilläres Plasma	5.0-7.0 mmol/l	4.0-5.0 mmol/l bzw. 7.0-8.0 mmol/l	< 4.0 mmol/l bzw. > 8.0 mmol/l
Postprandiale Glu- kose (2 Std. nach der Mahlzeit) Kapilläres Plasma	< 8.0 mmol/l	< 10.0 mmol/l	≥ 10.0 mmol/l
HbA _{1c} *	6.0-7.0%**	7.1-7.9%	≥ 8.0%***

Tab. 2:

- * Referenzbereich: 4-6.1% (Methode = «NGSP-traceable»)
- ** HbA1c-Zielwerte:
- Neu entdeckter Diabetes ohne Hypoglykämie-Risiko: möglichst normoglykäm (HbA_{1c} < 6.5%)
- Ältere Patienten (> 70 Jahre) oder Lebenserwartung < 10 Jahre: HbA1c zw. 7% bis max 8%
- Längere Diabetesdauer (> 12 Jahre) und Hypoglykämie-Neigung: HbA1c um 7%
- *** Ein HbA_{1c}-Wert ≥ 8% zeigt generell einen Handlungsbedarf an und legt die Einleitung einer Therapie oder einen Therapiewechsel nahe.

Die Festlegung der «individuellene Therapieziele» erfolgt gemäss der folgenden Abbildung 2.

Für die Behandlung siehe «Therapiewahl für die Behandlung des Diabetes mellitus Typ 2» auf Seite 33.

Individuelle Therapieziele

Abb. 2: Individuelle Therapieziele, adaptiert nach Ismail-Beigi F, et al. Ann Intern Med. 2011;154(8):554-559.

Multifaktorielle Therapie sämtlicher Risikofaktoren

Bei Patienten mit einem Diabetes Typ 2 ist das Risiko für kardiovaskuläre Ereignisse im Vergleich zu Nicht-Diabetikern deutlich erhöht. Die aggressive Behandlung sämtlicher kardiovaskulärer Risikofaktoren kann schwere kardiovaskuläre Ereignisse um mehr als 50% reduzieren. Deshalb sollte bei diesen Patienten nicht nur eine optimale Blutzuckerkontrolle angestrebt, sondern es sollten sämtliche kardiovaskulären Risikofaktoren gemäss den unten stehenden Richtwerten behandelt werden:

Richtwerte	
HbA _{1c} Individuelle Therapieziele gemäss Abbildung	< 7.0% 7.0%-8.0%
Blutdruck Bei Proteinurie/jüngeren Patienten (< 65 Jahre)	< 140/90 mmHg < 130/80 mmHg
LDL-Cholesterin Bei sehr hohem kardiovaskulären Risiko* Bei hohem kardiovaskulären Risiko** Bei moderatem kardiovaskulären Risiko***	< 1.4 mmol/l < 1.8 mmol/l < 2.5 mmol/l
Nikotinstopp	

Tab. 3:

Nach: Cosentino F, Grant PJ, Aboyans V et al. 2019 ESC Guidelines on diabetes. EHJ. 2020 Jan 7:41(2):255-323.

Therapiewahl für die Behandlung des Diabetes mellitus Typ 2

Generell besteht die Behandlung aus multifaktoriellen, verhaltenstherapeutischen und pharmakologischen Massnahmen, um Komplikationen zu verhindern oder zu verzögern und die Lebensqualität zu erhalten bzw. zu verbessern. Ein besonderer Fokus sollte auf das Bewegungsverhalten und die Gewichtskontrolle gelegt werden.

^{*} Patienten mit Diabetes (DM) und bekannter kardiovaskulärer Erkrankung oder anderem Endorganschaden (Proteinurie, Niereninsuffizienz, linksventrikulärer Hypertrophie, Retinopathie) oder ≥ 3 Risikofaktoren (Alter > 65 J., Hypertonie, Dyslipidämie, Rauchen, Adipositas) oder DM Typ 1 mit früher Erstdiagnose und Dauer von > 20 J.

^{**} DM-Dauer > 10 J. ohne Endorganschaden und einem weiteren Risikofaktor

^{***} Junge Patienten (DM Typ 1 < 35 Jahre oder DM Typ 2 < 50 Jahre) mit DM-Dauer < 10 J. ohne andere Risikofaktoren

θ Hauptindikationen* HbA1c-Ausgangs- und Reduktion cardiovaskulärer Ereigisse (MACE) Empfehlungen der Schweizerischen Gesellschaft für Endokrinologie und Diabetologie Gewichtsreduktion lephropathie Unabhängig von Gewichtsproblem HbA1c-Zielwert kv Erkrankungen Multiple kv RF, Multifaktorielle Therapie: Arterielle Hypertonie, Cholesterin, Niktionstopp + Diabetes mellitus 0 nsuffizienz Motivation für Lifestyle-Veränderungen = sehr wichtig Stop: Sulfonylharnstoffe und DPP-IV-Hemmer (wenn GLP-1 RA) Metformin (eGFR > 30) + (SGED/SSED) für die Behandlung von Diabetes mellitus Typ 2 (2023) GLP-1 RA (BMI > 28)** + SGLT-2 Inhibitoren + Basalinsulin oder kombinierte Insulin/Analoga (1-2/d) Weiterführung von: Metformin, SGLT-2 i, GLP-1 RA (eGFR > 30) (dann von hier aus beginnen) Insulinmangel*** + GLP-1 RA (BMI > 28** Metformin + SGLT-2 i DPP-4 i (BMI < 28) eGFR > 30) Hospitalisation wegen Hauptindikationen* Nephro-pathie HbA1c-Ausgangs- und Gewichtsproblem HbA1c-Zielwert Nephroprotektion Unabhängig von kv Erkrankungen Herzinsuffizienz Multiple kv RF, Reduktion der 0 nsuffizienz

Abb. 3

Prof. Dr. Michael Brändle, M.Sc.

Hyperlipidämien

Einleitung

- Das LDL-Cholesterin (LDL-C) ist der wichtigste behandelbare kardiovaskuläre Risikofaktor. Das Apolipoprotein B reflektiert die Konzentration aller atherogenen Lipoproteine und gewinnt für die Risikostratifizierung und Therapiesteuerung zunehmend an Bedeutung.
- · Eine Senkung des LDL-C ist alters- und geschlechtsunabhängig mit einer Senkung des kardiovaskulären Risikos verbunden und die absolute Risikoreduktion ist umso grösser, ie grösser die absolute LDL-C-Reduktion ist.
- Grundlage zur Indikationsstellung für eine LDL-C senkende Therapie ist die Einschätzung des absoluten kardiovaskulären Risikos. Die aktuellen Europäischen Leitlinien sehen 4 Risikokategorien vor (sehr hoch hoch intermediär tief)
- Risikorechner, wie beispielsweise der AGLA-Score oder die ESC-Charts, liefern eine Risikoeinschätzung für die nächsten 10 Jahre anhand der bestehenden Risikofaktorenkonstellation.
- Patienten mit Erkrankungen, die mit einem hohen Lebenszeitrisiko einhergehen, bspw. familiärer Hypercholesterinämie, Diabetes mellitus oder chronischer Niereninsuffizienz werden der Gruppe mit hohem oder sehr hohem kardiovaskulären Risiko zugeteilt.
- Bei klinischer oder ausgeprägter, bildgebend nachweisbarer Atherosklerose erfolgt die Zuordnung zur Risikokatgorie sehr hoch.

Definitionen

- Hypercholesterinämie: Erhöhung des LDL-C und in der Folge des Gesamtcholesterins > 95 Perzentile der betrachteten Population.
 Es werden hier von Labors aber praktisch ausnahmslos nicht Norm-, sondern Ziel- oder Idealwerte angegeben: LDL-C < 2.6 oder 3 0 mmol/L Gesamtcholesterin < 5 0 mmol/L
- Hypertriglyzeridämie: Erhöhung der Nüchtern-Triglyzeride (TG) > 2.0 mmol/l
- Schwere Hypertriglyzeridämie: Erhöhung der Nüchtern-TG > 10 mmol/l, hierbei sind immer auch Chylomikronen (CM) nachweisbar (Chylomikronämie)
- Kombinierte (gemischte) Hyperlipidämie: Erhöhung des LDLund/oder Gesamtcholesterins und der Triglyzeride
- Dyslipidämie: für den DM Typ 2 bzw. das metabolische Syndrom charakteristischer Lipidphänotyp, durch eine Hypertriglyzeridämie, normales LDL-C und tiefes HDL-C (F <1.3, M< 1.0 mmol/l) gekennzeichnet. Wird aber oft auch als Überbegriff für alle Lipidstoffwechselstörungen verwendet
- Trigyzeridreiche Lipoproteine (TRL): VLDL, IDL und CM. TRL und deren Remnants (TRLR) sind ebenso sehr atherogen.
- Non-HDL-Cholesterin: Gesamt-C. HDL-C. Cholesterin in TRL/ TRLR, bei Dyslipidämien/Hypertriglyzeridämien besserer Risikoprädiktor als das LDL-C.
- Apo B: Mass für die Anzahl aller zirkulierenden atherogenen Lipoproteine (TRL, TRLR, LDL). Bei Dyslipidämien/Hypertriglyzeridämien besserer Risikoprädiktor als das LDL-C und v.a. für das Therapiemonitoring geeignet.
- Hyperlipoproteinämie (a): Erhöhung des Lipoprotein (a) > 500 mg/l (120 nmol/l)
- Familiäre Hypercholesterinämie (FH): durch einen klinischen Score diagnostizierte FH; Heterozygote FH (HeFH): molekulargenetisch bestätigt, monogenetisch (LDLR-, APOB- PCSK9-Mutation)

Screening

- Generell ab dem 40. (Männer) bzw. 50. (Frauen) Lebensjahr
- Bei Diagnose weiterer kardiovaskulärer Risikofaktoren unmittelbar
- Bei Diagnose einer primären Hyperlipidämie oder frühzeitigen Atherosklerose bei erstgradig Verwandten

Abklärung

Eine exakte phänotypische und ätiologische Klassifizierung (Tab. 1-5) ist nötig; insbesondere korrekte Diagnose einer Familiären Hypercholesterinämie (FH) oder Familiär kombinierten Hyperlipidämie (FCHL).

Anamnese

- Detaillierte persönliche und Familienanamnese bezüglich Dyslipidämien und (frühzeitiger: Männer < 55 Jahre, Frauen < 60 Jahre) Atherosklerose
- Medikamentenanamnese (Tab. 4) einschliesslich Unverträglichkeiten gegenüber Lipidsenkern
- Ernährungsanamnese, ggf. durch Ernährungsberatung

Klinische Untersuchung

BMI, Bauchumfang, Fettverteilung (Lipodystrophie?), Blutdruck. Xanthome (Achillessehnen, Strecksehnen der Hände), Arcus lipoides

Labor

- Ausser bei bekannter Hypertriglyzeridämie Nüchtern-Blutentnahme nicht obligat!
- Lipidprofil (Cholesterin, Triglyzeride, LDL-C, HDL-C) in nasschemischem Labor
- · Apolipoprotein B (bei kombinierter Hyperlipidämie und Hypertriglyzeridämie)
- Lipoprotein (a) bei initialem Screening
- · TSH, Glukose/HbA_{1c} und Urinstatus (Ausschluss sekundäre Hyper-/Dyslipidämien - Tab. 5)
- · HsCRP, Kreatinin, eGFR und Albumin/Kreatinin-Quotient im Spoturin zur Risikostratifizierung

Dutch Lipid Clinic Network-Score (DLCNS)

Bei LDL-C > 5 mmol/l/> 3.5 mmol/l unter Statintherapie und/oder Gesamtcholesterin > 8 mmol/l (Tab. 3)

Molekulargenetische Abklärung

- Nach Rücksprache Lipidsprechstunde Endokrinologie
- Diagnose einer heterozygoten FH: ZLM-FH-Panel (u.a. LDLR-, APOB-, PCSK9-Gen) empfohlen bei LDL-C > 5 mmol/l und DLCN-Score > 5
- ApoE-Genotyp bei V.a. Dysbetalipoproteinämie gem. TC/Apo B -Ratio
- Bei V.a. hereditäre Chylomikronämie: ZLM-Hypertriglyzeridämie-Panel (u.a. LPL, APOC2, LMF-1-, GP1HBP1, etc.) bei V.a. Familiäres Chymomikronensyndrom, wiederholt Nüchtern-Tg > 10 mmol/l

Atheroskleroseimaging

- Koronare Kalklast (CAC, Agatston-Score) oder sonographischer Plaquenachweis (cerebrovaskulär, abdominal, femoral) zur individuellen Risikostratifizierung bei niedrigem/intermediärem Risiko optional
- · Eventuell bei FH ohne bekannte klinische Atherosklerose zur Steuerung der Therapieintensität; CAC im Verlauf unter Statintherapie nicht geeignet.

Familienabklärung

Nach Diagnoststellung einer (heterozygoten) FH muss zwingend eine Familienabklärung durch ein klinisches und wenn immer möglich genetisches (bei HeFH) Kaskadenscreening erfolgen

	Gesamt-/LDL-C. (mmol/l)	Triglyceride (mmol/l)	Apo B (g/l)
Hypercholesterin- ämie	> 5.0/3.0	< 2.0 mmol/l	> 1.0
Kombinierte Hyper- lipidämie	> 5.0/3.0	> 2.0 mmol/l	> 1.0
Hypertriglyzerid- ämie	< 5.0/3.0	> 2.0 mmol/l	< 1.0
Moderate Hyper- triglyzeridämie		2.0-10.0 mmol/l	
Schwere Hyper- triglyzeridämie		> 10.0 mmol/l	

Tab. 1: Phänotypische Einteilung der Hyperlipidämien

	Häufigkeit	Genetik/Patho- physiologie	Labor/Klinik	kardiovaskuläres (kv) Risiko
Familiäre Hypercholeste- rinämie (FH)	1: 250	Autosomal- dominant; LDL- Rezeptor- APOB- oder PCSK9-Muta- tion; polygene Form bei 20% mit klinischer Diagnose	LDL-C, 5-12 mmol/I (hetero- zygote), > 13 mmol/I (homozygote), Sehnenschei- denxanthome, Arcus lipoides < 45 Jahre	ተተተተ ተተተ
Familiär kom- binierte Hyperlipidämie (FCHL)	1: 200	polygen/VLDL- Überproduktion	TG > 2.0 mmol/l, Apo B > 1.2 g/l und pos. FA für frühzeitige kar- diovaskuläre Erkrankung bei 1° Verwandtem	$\uparrow \uparrow$
Familiäre Dys- betalipoprote- inämie	1:10'000	Autosomal- rezessiv/ver- minderte ApoE- mediierte Clearance von cholesterinrei- chen Remnants	Chylomikronen- remnants; Chol/ Apo B > 6.2 TG/ Apo B < 10 & Apo E2/E2	↑ ↑
Familiäre Chylomikron- ämie	1:1′000′000	Autosomal- rezessiv/u.a. Lipoprotein- lipasemutation	Chylomikronen- syndrom, akute Pankreatitis (TG > 20 mmol/I)	\leftrightarrow

Tab. 2: Wichtige primäre Hyperlipidämien

Familienanamnese (maximal 2 Punkte)	Punkte
Erstgradig Verwandter mit frühzeitiger KHK (M < 55 Jahre, F < 60 Jahre)	1
Erstgradig Verwandter mit LDL-C > 95. Perzentile (alters- und geschlechts- abhängig, CH \sim 5.5 mmol/l)	1
Erstgradig Verwandter mit Sehnenscheidenxanthomen oder Arcus cornealis	2
Kinder < 18. Lebensjahr LDL-C > 95. Perzentile (alters- und geschlechstabhängig)	2
Persönliche Anamnese (maximal 2 Punkte)	Punkte
Frühzeitige KHK (M < 55 Jahre, F < 60 Jahre)	2
Frühzeitige PAVK oder zerebrovaskuläre Verschlusskrankheit (M < 55 Jahre, F < 60 Jahre)	1
Klinische Untersuchung (maximal 6 Punkte)	Punkte
Sehnenscheidenxanthome	6
Arcus cornealis vor dem 45. Lebensjahr	4
LDL- Cholesterin-Werte	Punkte
> 8.5 mmol/l	8
6.5-8.4 mmol/l	5
5.0-6.4 mmol/l	3
4.0-4.9 mmol/l	1
Molekulargenetische Analyse	Punkte
Nachgewiesene pathogene Mutation im LDL-Rezeptor-, Apo B- oder PCSK9 – Gen	8
> 8 Punkte: definitive Diagnose einer FH 6–8 Punkte: wahrscheinliche FH 3–5 Punkte: mögliche FH 0–2 Punkte: FH unwahrscheinlich	

Tab. 3: «Dutch Lipid Clinic Network-Score» zur klinischen Diagnosestellung einer Familiären Hypercholesterinämie (FH)

Thiazide (> 25 mg/Tag)	TG ↑	Cyclosporin	LDL-C ↑
Östrogene	TG ↑	Sirolimus, Everolimus	Chol ↑, TG ↑
Tamoxifen, Clomifen	TG ↑	Olanzapin	TG ↑
Androgene, Anabolika	HDL-C ↓	Proteasehemmer	Chol ↑, TG ↑, HDL-C ↓
Isotretinoin	Chol ↑, TG ↑	Interferon	TG ↑

Tab. 4: Häufige medikamenteninduzierte Hyper-/Dyslipidämien

Hypothyreose	LDL-C ↑↑	Cholestatische Lebererkrankungen	Chol ↑↑ (LpX)
Diabetes mellitus (DM)	TG ↑, HDL-C ↓	Akute intermittie- rende Porphyrie	LDL-C ↑
Hypercortisolismus	Chol ↑, TG ↑	Glykogenose Typ 1	TG ↑↑
Lypodystrophien	TG ↑↑, HDL-C ↓	Sepsis	TG ↑
Adipositas	TG ↑, HDL-C ↓	Monoklonale Gam- mopathie	TG ↑ u/o Chol ↑
Nephrotisches Syndrom	LDL-C ↑↑, TG ↑	Anorexie	LDL-C↑
Alkoholabusus	TG ↑	Schwangerschaft	TG ↑

Tab. 5: Sekundäre Hyper-/Dyslipidämie-Ursachen

Risikostratifizierung

Überprüfung, ob der Patient a priori der hohen oder sehr hohen Risikokategorie angehört (Tab. 6), falls dies nicht zutrifft: Risikoabschätzung mittels eines Risikoscores (CH: AGLA-Score, www.agla.ch; ESC-Score für Länder mit niedrigem Risiko, Webseite für div. Scores: https://uprevent.com)

Risikomodifikatoren: Ermittlung und Berücksichtigung von Faktoren, die das Risiko bei Personen mit niedrigem oder intermediärem Risiko erhöhen bzw. diese Personen in eine höhere Risikogruppe klassifizieren:

- Begleiterkrankungen: chronisch-entzündliche Erkrankungen (Rheumatoide Arthritis, usw.): HIV-Infektion: Nichtalkoholische Fettlebererkrankung; obstruktives Schlafapnoesyndrom; Vorhofflimmern, linksventrikuläre Hypertrophie; Depression
- Begleitumstände: psychosozialer Stress oder Isolation; körperliche Inaktivität
- · Bildgebender Atherosklerosenachweis: erhöhtes Risiko bei CAC (Agatston-Score) > 100 und/oder Plaguenachweis Carotis oder femoral; umgekehrt reduziert eine diesbezüglich unauffällige Untersuchung (keine Plaques in der Karotissonografie, Agatston-Score < 10) das kardiovaskuläre Risiko erheblich
- Biochemische Risikofaktoren: Lp(a) > 500 mg/l (120 nmol/l); hsCRP > 3 mg/l; Mikroalbuminurie

Anmerkung: Die Risikostratifizierung gem. ESC 2021 und AGLA 2023 unterscheidet sich in einigen Nuancen (v.a. bezüglich des niedrigen bis moderaten Risikos), die vernachlässigbar erscheinen.

Risikokategorie	gemäss AGLA 2023/ESC 2021
Sehr hoch	Klinisch manifeste Atherosklerose: ACS, CVI, TIA, PAVK, Aortenaneurysma, St.n. Revaskulariation (PCI, AKBP, andere arterielle) Hohes Risiko und bildgebend nachweisbare Atherosklerose: Signifikante Plaques in der Koronarangiografie Karotissonografie, Koronar-CT Patienten mit DM Typ 2/DM Typ 1 nach dem 40. Lebensjahr mit Endorganschaden³ oder ≥ 3 Hauptrisikofaktoren¹b Chronische Niereninsuffzienz mit eGFR < 30 ml/min/1.73 m2 bzw eGFR 30-44 ml/min/1.73 m2 und ACR > 3 mg/mmol Familiäre Hypercholesterinämie mit ≥ 1 Hauptrisikofaktor¹b ESC-Score2/SCORE2-OP: 10-Jahres Risiko < 50 Jahre ≥ 7.5%*; 50-69 Jahre ≥ 10%*, > 70 Jahre ≥ 15%*
Hoch	Patienten mit deutlich erhöhten einzelnen RF: LDL-C > 4.9 mmol/l, Gesamtcholesterin > 8 mmol/l, BD > 180/110 mmHg Patienten mit DM Typ 2/DM Typ 1 nach dem 40. Lebensjahr oder weiteren Hauptrisikofaktoren ^b Intermediäres Risiko und bildgebend nachweisbare Atherosklerose Chronische Niereninsuffizienz mit eGFR 30-44 ml/min/1.73 m2 und ACR < 3 mg/mmol/l oder eGFR 45-59 ml/min/1.73 m2 und ACR 3-30 mg/mmol oder eGFR ≥ 60 ml/min/1.73 m2 und ACR > 30 mg/mmol Familiäre Hypercholesterinämie, (Familiär kombinierte Hyperlipidämie) ESC-Score2/SCORE2-OP: 10-Jahres Risiko < 50 Jahre 2.5% bis < 7.5%*; 50-69 Jahre 5% bis < 10%*, > 70 Jahre 7.5% bis < 15%* AGLA-Score 10 Jahres-Risiko > 20%**
Moderat und Niedrig	Patienten mit DM Typ 2/DM Typ 1 nach dem 40. Lebensjahr (Moderates Risiko) Niedriges-moderates Risiko ESC-Score2/SCORE2-OP: 10-Jahres Risiko < 50 Jahre < 2.5%*; 50-69 Jahre < 5%*, > 70 Jahre < 7.5%* Moderates Risiko gemäss AGLA-Score 10-20%** Niedriges Risiko gemäss AGLA-Score < 10%**

Tab. 6: Kardiovaskuläre Risikokategorien modifiziert nach AGLA 2023 (www.agla.ch) unter Berücksichtig ESC 2021 (European Society of Cardiology, www.escardio.org); a Endorganschaden: Mikroalbuminurie, Retinopathie, Neuropathie; b Hauptrisikofaktoren: Rauchen, Hypertonie, Adipositas; * 10-Jahres-Risiko für tödliche oder nicht-tödliche kardiovaskuläre Ereignisse (Myokardinfarkt, Schlaganfall); ** 10-Jahres-Risiko für tödliche und nicht-tödliche Koronarereignisse.

Lipidsenkende Therapie und Zielwerte

- Bei Hypercholesterinämien, kombinierten Hyperlipidämien und moderaten Hypertriglyzeridämien ist die kardiovaskuläre Risikoreduktion das erste Therapieziel.
- Die Indikationsstellung erfolgt aufgrund des absoluten kardiovaskulären Risikos. Primär soll zur Risikoreduktion eine Statintherapie eingesetzt werden, um das LDL-Cholesterin zu senken.
 - Bei einem niedrigen Risiko ist primär eine Lebensstiländerung empfohlen. In der PREDIMED-Studie wurde durch eine mit Olivenöl oder Nüssen angereicherte mediterrane Ernährung das kardiovaskuläre Risiko reduziert
- Falls das LDL-C Ziel mit einer Statintherapie nicht erreichbar ist. soll eine Kombination mit Ezetimibe oder PCSK9-basierten Therapien oder Bempedoinsäure erfolgen.
- Je grösser die LDL-C Reduktion, desto grösser die absolute kardiovaskuläre Risikoreduktion. Deshalb soll bei hohem/sehr hohem kv Risiko immer eine potente Statintherapie (Atorvastatin 40 mg, Rosuvastatin 20 mg) eingesetzt werden, um das Ziel einer LDL-C Reduktion > 50% zu erreichen. Je höher das ky Risiko, desto tiefer der LDL-C Zielwert (Tab. 7).
- Das Apo B und das Non-HDL-Cholesterin sollen immer beim T2DM, bei kombinierten Hyperlipidämien und Hypertriglyzeridämien bestimmt werden.

Risikokategorie	Zielwerte			Therapiestrategie
	LDL- Cholesterin*	Non-HDL- Cholesterin*	ApoB*	Medikamentöse Therapie**
Sehr Hoch	< 1.4 mmol/l und 50% Reduktion	< 2.2 mmol/l	< 0.65 g/l	Potentes Statin PCSK9-Hemmer, Ezetimibe, Bempedoisäure
Hoch	< 1.8 mmol/l und 50% Reduktion	< 2.6 mmol/l	< 0.8 g/l	Potentes Statin PCSK9-Hemmer, Ezetimibe, Bempedoisäure
Intermediär	< 2.6 mmol	< 3.5 mmol/l	< 1.0 g/l	· Statin
nierdrig				· keine

Tab. 7: LDL-C-, Non-HDL-C*- und Apo B*-Zielwerte, modifiziert nach AGLA & ESC Leitlinien; *Bei kombinierter Hyperlipidämie und moderater Hypertriglyzeridämie; **für Hohes und Sehr Hohes Risiko siehe auch Abb. 1; Empfehlung bzgl. chronischer Niereninsuffizienz/Albuminurie siehe Text Lipidsenkende Therapie und Zielwerte chronische Niereninsuffizienz auf Seite 43

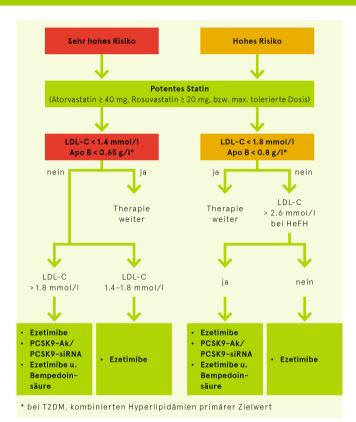


Abb.1: Medikamentöse Therapieempfehlungen/-optionen bei hohem/sehr hohem Risiko gem. aktuellen Richtlinien und Limitationen der SL (Stand 1.1.2023); *bei T2DM, kombinierten Hyperlipidämien primärer Zielwert; Ak = Antikörper; siRNA = small interfering RNA (RNA-Interferenz)

Lipidsenkende Therapie bei besonderen Patientengruppen

Ältere Patienten (> 75 Jahre)

Es muss im Einzelfall unter Berücksichtigung der Gesamtsituation gemeinsam mit dem Patienten entschieden werden, ob eine Stat-

- intherapie durchgeführt werden soll.
- Metaanalysen randomisierter Studien zeigen für Patienten dieser Altersgruppe in der Primär- und Sekundärprävention eine mit jüngeren Patienten vergleichbare absolute Risikoreduktion.

Chronische Niereninsuffizienz

- Patienten mit dialvsepflichtiger Niereninsuffizienz (KDIGO G5) profitieren nicht von einer Statintherapie. Wir empfehlen, die Statintherapie bei für eine Nierentransplantation gelisteten Dialysepatienten fortzuführen.
- Patienten mit einer fortgeschrittenen Niereninsuffizienz KDIGO G3-4 haben ein (sehr) hohes kardiovaskuläres Risiko und der Nutzen einer Statintherapie (+/- Ezetimibe) auf das kardiovaskuläre Risiko ist gut belegt (-20% pro mmol/I LDL-C-Reduktion), diese somit indiziert.
- Das Vorhandensein einer Albuminurie (KDIGO ≥ A2) zeigt unabhängig von der eGFR ebenso ein hohes kardiovaskuläres Risiko an, eine Statintherapie ist emphohlen.
- Der Nutzen der Statintherapie nimmt aber mit abnehmender eGFR ab und der Einsatz hoch dosierter (potenter) Statine bei einer eGFR < 30 ml/min ist umstritten

Kombinierte Hyperlipidämie/Hypertriglyzeridämie, DM Typ 2

- Die kardiovaskuläre Risikoreduktion erfolgt primär mit Statinen, zudem können Ezetimibe und PCSK9-Ak/siRNA eingesetzt werden
- Ebenso kann eine Behandlung mit hochdosierter Eicosapentaensäure (Vakzepa, Icosapentethylester; im Moment in der CH noch nicht verfügbar) erwogen werden.
- · Eine Kombination mit Fenofibrat kommt vor allem bei einer persistierend schweren Hypertriglyzeridämie in Betracht. Eine kardiovaskuläre Risikoreduktion wurde nur in post hoc Analysen bei TG > 2.0 mmol/I und einem HDL-C < 1.0 mmol/I nachgewiesen.

Schwere Hypertriglyzeridämie

Aufgrund des Pankreatitisrisikos steht zunächst die Triglyzeridsenkung im Vordergrund.

- Die wichtigste Massnahme ist die Reduktion der Kalorien- und v.a. Fettzufuhr Finfache Zucker (Haushaltszucker Traubenzucker Fruchtzucker) sollen gemieden werden.
- Gelingt es nicht, die Nüchtern-TG mit der Ernährungstherapie < 10 mmol/l zu senken, kommt eine zusätzliche Therapie mit Fibraten und/oder hochdosierter EPA in Betracht.
- Nach Kontrolle der Hypertriglyzeridämie erfolgt bei erhöhtem kardiovaskulären Risiko eine Kombinationstherapie mit Statinen.

Ernährungstherapie

Kardiovaskuläre Prävention:

- Gesättigte Fette < 10% der Gesamtkalorien, keine Transfette
- Mit Olivenöl/Nüssen angereicherte mediterrane Ernährung -(kardiovaskuläre Risikoreduktion in der PREDIMED-Studie und CORDIOPREV-Studie)
- Erreichen eines normalen Körpergewichtes (BMI < 25 kg/m²)
- Gesteigerte Zufuhr von Nahrungsfasern

Hypertriglyzeridämie:

- Erreichen eines normalen Körpergewichtes (BMI < 25 kg/m²)
- Reduktion der Alkohohlzufuhr
- Reduktion der Fettzufuhr und Einsatz mehrfach ungesättigter Fettsäuren
- Reduktion der Fruktosezufuhr
- Einsatz von mittelkettigen Triglyzeriden evtl. bei Chylomikronämie

Medikamentöse Therapie

		•		
Intervention	Cholesterin ↓	LDL-C ↓	HDL-C ↑	TG ↓
Statine	- 15-40%	- 20-55%	+ 5-15%	- 10-30%
Ezetimibe	- 18-20%	- 15-20%	ca. + 3%	ca 8%
PCSK9-Ak/ siRNA	- 40-50%	- 50-70%	+ 5-10%	- 10-20%
Fibrate	- 10-25%	- 5-20%	+ 10-25%	- 20-50%
Bempedoin- säure	- 15%	- 22%	- 6%	- 1.5%

Tab. 8: Prozentuale Senkung bzw. Erhöhung einzelner Lipide durch verschiedene Lipidsenker

Statine

	Vor Therapie	Nach Therapiebeginn/- anpassung	Langzeitverlauf
Lipide	Mindestens 2 im Abstand von 1–2 Wochen Ausnahme: bei ACS sofortiger Beginn Statin- therapie	8 (+/- 4) Wochen nach Beginn mit Lipidsenker 8 (+/- 4) Wochen nach Therapieanpassung	Nach Erreichen der Ziel- werte 1/Jahr, sofern keine besonderen Gründe vorliegen
Leberenzyme (ALT)	· Bestimmen	8 Wochen nach Thera- piebeginn 8 Wochen nach Dosis- anpassungen	· 1/Jahr, falls Leberenzyme < 3 ULN
СК	Bestimmen Falls CH > 5 ULN, nicht starten, Test wiederholen	Keine Routinekontrollen Tests bei Auftreten von Myalgien Cave: ältere Personen, Begleitmedikamente mit Interaktionsrisiko, Polymedikation, Leberoder Nierenkrankheit	Keine Routinekontrollen Tests bei Auftreten von Myalgien Cave: ältere Personen, Begleitmedikamente mit Interaktionsrisiko, Polymedikation, Leber- oder Nierenkrankheit

Tab. 9: Labormonitoring bei Statintherapie (www.agla.ch)

Präparate:

- Simvastatin (10-80 mg)*; 80 mg aufgrund des ungünstigen NW-Profils nicht empfohlen
- · Pravastatin (20-40 mg)*
- · Atorvastatin (10-80 mg)*
- Rosuvastatin (10-40 mg)*
- Fluvastatin (40 mg u. ret. 80 mg)*
- Pitavastatin (Livazo 1–4 mg) *Generika

Eigenschaften:

- Gesteigerter LDL-Abbau infolge Cholesterinsynthesehemmung in der Leber
- · LDL-C Senkung von Präparat/Dosis abhängig, bis 55%, zusätzliche LDL-C Senkung ca. 6% bei Dosisverdoppelung

- Reduktion von kardiovaskulärer Morbidität und Mortalität nachgewiesen
- Bei LDL-C > 3.5 mmol/l und/oder ACS/Stroke primär potentes Statin empfohlen (Simvastatin 40 mg. Atorvastatin ≥ 40 mg. Rosuvastatin 10-20 mg)
- · Kombination mit Ezetimibe, PCSK9-Hemmern, Bempedoinsäure und Fenofibrat möglich

Ezetimibe

Präparate:

- Ezetrol (Ezetimibe) 10 mg/Tag
- Ezetimibe/Simvastatin (Inegv. Generika: 10/10 mg 10/20 mg, 10/40 mg, 10/80 mg): 10/80 mg aufgrund des ungünstigen Nebenwirkungsprofils nicht empfohlen
- Ezetimibe/Atorvastatin (Atozet 10/10 mg, 10/20 mg, 10/40 mg, 10/80 mg)
- Ezetimibe/Rosuvastatin (Zenon 10/10 mg, 10/20 mg, 10/40 mg; Generika: 10/10 mg, 10/20 mg)

Eigenschaften:

- Hemmung der intestinalen Cholesterinabsorption
- LDL-C Senkung ca. 20%
- Kardiovaskuläre Risikoreduktion in der SHARP- und IMPROVE-IT-Studie in Kombination mit Statinen

PCSK9-basierte Therapien

PCSK9 - Antikörper Präperate

- Evolocumab (Repatha 140 mg sc alle 2 Wochen)
- Alirocumab (Praluent 75 oder 150 mg sc alle 2 Wochen)

PCSK9 - siRNA Präperate

Inclisiran (Legvio 284 mg sc bei 0, 3 Monaten, dann alle 6 Monate)

Eigenschaften:

PCSK9 ist eine hepatisch sezerniertes Protein, das das Recycling des LDL-Rezeptors stört. Eine Hemmung der Bildung von PCSK9 durch RNA-Interferenz (Inclisiran) oder Neutralisierung von zirkulierendem PCSK9 durch monoklonale Antikörper (Alirocumab, Evolocumab) führt zu einer ca. 50-60% Senkung des LDL-C.

- Eine kardiovaskuläre Risikoreduktion bei Hochrisikopatienten unter Statintherapie in der FOURIER- und ODYSSEY OUTCOMES-Studie gezeigt. Für Inclisiran liegen bisher keine Resultate von Studien mit kardiovaskulären Endpunkten (CVOT) vor.
- Subgruppenanalysen der PCSK9-Ak-CVOT weisen eine stärkere kardiovaskuläre Risikoreduktion bei Patienten mit ≥ 2 vorangegangenen Myokardinfarkten, einem Myokardinfarkt während der letzten beiden Jahre, einer Mehrgefässerkrankung, einem LDL-C > 2.6 mmol/l, hsCRP > 3 mg/l und Lp(a) > 500 mg/l nach.
- · Limitatio der Spezialitätenliste beachten

Bempedoinsäure

Präparate:

- · Nilemdo (Bempedoinsäure) 180 mg/Tag
- Nustendi (Bempedoinsäure 180 mg und Ezetimibe 10 mg/Tag)

Eigenschaften:

- Bempedoinsäure ist eine Prodrug, die in der Leber zu Bempedoyl-CoA aktiviert wird und dort die Acetyl-CoA-Carboxylase und somit die Cholesterinsynthese hemmt
- LDL-C Senkung ca. 20%, auch in Kobination mit Statinen und Ezetimibe
- Als Nebenwirkung muss v.a. ein Anstieg der Harnsäure und ein erhöhtes Risiko für Gichtarthritiden beachtet werden
- · Bisher noch kein CVOT vorliegend
- · Limitatio der Spezialitätenliste beachten

Fibrate

Präparate:

- Fenofibrat (Lipanthyl 200 M, Lipanthyl 267 M, Cholib [Fixkombination mit Simvastatin])
- · Gemfibrozil (Gevilon Uno)
- · Bezafibrat (Cedur retard)
- · Ciprofibrat (Hyperlipen)

Eigenschaften:

· Gesteigerter Abbau triglyzeridreicher Lipoproteine (v.a. VLDL)

- Triglyzeridsenkung bis 50%, moderater Anstieg des HDL-C, z.T. LDL-C Anstieg infolge beschleunigter Umwandlung VLDL - LDL
- Nur Fenofibrat kann mit Statinen kombiniert werden.
- Einsatz bei moderater und schwerer Hypertriglyzeridämie
- Kein konsistenter Nachweis einer kardiovaskuläre Risikoreduktion (nur in einigen Studien nachweisbar, Helsinki Heart-Studie, VA-HIT-Studie, ACCORD-LIPID-Studie bei Kombination mit Simvastatin in Subgruppe mit TG > 2.3 mmol/l und HDL-C < 0.9 mmol/l bei Patienten mit DM Typ 2).
- Einsatz vorwiegend bei schwerer Hypertriglyzeridämie

Omega-3-Fettsäuren

Präparate:

- Eicosapentaensäure (EPA)/Docosahexaensäure (DHA) (z.B. Burgerstein Omega-3-EPA, 378 mg EPA, 72 mg DHA)
- Vakzepa (Icosapentethylester): 2x2g/Tag

Eigenschaften:

- Hoch dosierte Omega-3-Fettsäuren aus Fischöl (2-4 g gereinigtes EPA/DHA) senken die Triglyzeride um ca. 35% und werden bei therapierefraktären Hypertriglyzeridämien empfohlen.
- Eine kardiovaskuläre Risikoreduktion konnte ausschliesslich mit Vakzepa (Icosapentethylester, hochdosiertes, reines EPA-Präparat, 4g/Tag) nachgewiesen werden, während andere Präparate (bspw. Omega-3-Carboxylsäure keine kardiovaskuläre Risikoreduktion gezeigt haben.
- Vakzepa ist von der Swissmedic für Reduzierung des Risikos für kardiovaskuläre Ereignisse bei mit Statinen behandelten erwachsenen Patienten mit hohem kardiovaskulärem Risiko und erhöhten Triglyceridwerten (≥1.7 mmol/l) sowie nachgewiesener kardiovaskulärer Erkrankung oder Diabetes und mindestens einem weiteren kardiovaskulären Risikofaktor zugelassen. Bislang erfolgte keine Aufnahme in die Spezialitätenliste (Stand 01/2023).

Vorgehen bei Nebenwirkungen bzw. Unverträglichkeit der lipidsenkenden Therapie

Statin-assoziierte Myopathie

Universindente Therapie bei asymptomatischer CK-Frhöhung < 1000 U/L Suche nach alternativen Ursachen (Makro-CK), Verlaufskontrolle

Suche nach Medikamenteninteraktionen

Suche nach anderen Ursachen einer Myopathie (ibs. Hypothyreose, Polymyalgie, Polymyositis, Medikamente usw.)

Wechsel auf ein Statin mit anderen pharmakokinetischen Eigenschaften (Simvastatin, Atorvastatin ersetzen durch Prayastatin, Fluyastatin, Rosuvastatin, Pitayastatin und umgekehrt)

Dosisreduktion, ggf. Kombination mit Ezetrol

Gabe eines Statins mit langer Halbwertszeit (Atorvastatin, Rosuvastatin) ieden 2. Tag

Absetzen der Statintherapie. Es gibt Hinweise, dass es nach Absetzen einer Statintherapie im Sinne eines Reboundphänomens vermehrt zu kardiovaskulären Ereignissen kommt, weshalb dieser Schritt bei Patienten mit KHK und tolerablen Symptomen nur gemacht werden soll. wenn die anderen Massnahmen nicht erfolgreich sind.

Einsatz alternativer Lipidsenker

Tab. 10: Schrittweises Vorgehen bei Statin-assoziierter Myopathie

Medikament	Interaktion mit
Fibrate (Ausnahme: Fenofibrat)	Allen Statinen
Antimykotika (Fluconazol, Ketoconazol)	Simvastatin, Atorvastatin
HIV-Proteasehemmer	Simvastatin, Atorvastatin, Rosuvastatin
Verapamil	Simvastatin, Atorvastatin
Amiodaron	Simvastatin, Atorvastatin
Cyclosporin	Simvastatin, Atorvastatin, Rosuvastatin
Makrolide	Simvastatin, Atorvastatin

Tab. 11: Wichtige Medikamenteninteraktionen mit Statinen

- Betrifft ca. 10% der mit Statinen behandelten Patienten
- Myalgien (typischerweise proximal betonte muskelkaterähnliche oder grippale Beschwerden, die oft durch körperliche Aktivität akzentuiert werden) oder Muskelkrämpfe
- CK-Erhöhung möglich, aber nicht obligat; CK-Erhöhung ohne Beschwerden möglich
- Rhabdomyolyse (CK > 10'000 U/I): sehr selten, v.a. infolge Medika-

- menteninteraktionen, die zu erhöhten Plasmakonzentrationen der Statine führen
- Immunvermittelte nekrotisierende Myopathie: Einzelfälle, Assoziation mit HMG-CoA-Reductase-Ak
- · Risikofaktoren genetische Prädisposition, Alter > 80 Jahre, Leberund Niereninsuffizienz. Alkoholabusus u.a.
- Dauer bis Auftreten der Beschwerden ca. 6 Monate, bis zum vollständigen Verschwinden nach Absetzen ca. 3 Monate, grosse individuelle Variabilität
- Systematisches CK-Monitoring bei beschwerdefreien Patienten unter einer Statinmonotherapie nicht gerechtfertigt

Hepatopathie

- Hepatopathien sind selten, können unter Statinen und Fibraten auftreten
- · Eine asymptomatische Transaminasenerhöhung bis zum maximal 3-fachen der oberen Norm wird als tolerabel betrachtet.
- Hypertriglyzeridämien sind regelhaft mit einer NAFLD assoziiert. die keine Kontraindikation für eine lipidsenkenden Therapie ist.

Statine und Diabetesrisiko

- Das Risiko für das Neuauftreten eines DM Typ 2 steigt unter einer Statintherapie um ca. 15%.
- Betroffen sind v.a. ältere Patienten, die mit potenten Statinen behandelt werden.
- Das kardiovaskuläre Risiko von Patienten mit DM wird durch Statine erheblich reduziert
- Statine führen nicht zu einer Verschlechterung der Diabetes-Einstellung/Zunahme mikrovaskulärer Komplikationen.

Quellen/Links

- www.agla.ch
- https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/2021-ESC-Guidelines-on-cardiovascular-disease-preventionin-clinical-practice

PD Dr. Stefan Bilz, Prof. Dr. Hans Rickli, Prof. Dr. Dr. h.c. Walter Riesen

Rauchstopp

Tabakkonsum & Nikotinabhängigkeit

- Tabakkonsum ist die häufigste vermeidbare Todesursache weltweit. ungeachtet von Alter und Komorbiditäten.
- Das Ansprechen und die Erfassung des Raucherstatus (Ja/Nein) und die aktive Beratung zum Rauchstopp. (siehe Abbildung 1 «Mini-Intervention») bei iedem Patientenkontakt erhöhen die Bereitschaft eines Rauchstopps und sind deshalb unerlässlich.
- Der Konsum bezieht sich sowohl auf herkömmliche Zigaretten als auch auf andere Nikotinprodukte (Snus, IQOS, E-Zigaretten etc.).

Rauchstoppberatung

Empfehlung zur Durchführung der «Mini-Intervention» bei iedem Patientenkontakt (1 Frage, ca. 60 Sekunden), da sich damit die Chance auf einen erfolgreichen Rauchstopp signifikant erhöht

Rauchstopp-Beratung - Mini-Intervention

Abb. 1 Nach: Ärztliche Rauchstoppberatung: 3. Auflage 2015; Avevard P et al.: DGK AWMF-S3 Leitlinie "Rauchen und Tabakabhängigkeit: Screening, Diagnostik und Behandlung»

- E-Learning: Was ist eine Rauchstopp-Mini-Intervention?, Anleitung zu den einzelnen Schritten, Wie motiviere ich?
- Bei psychiatrischen Vorerkrankungen empfiehlt sich in jedem Fall eine professionelle Rauchstoppberatung und/oder eine psychiatrische Mitbetreuung der Patienten
- Bei Schwangeren/Postpartum: Adaptierte Mini-Intervention in

Zusammenarbeit mit der Frauenklinik KSSG

 Beratungsangebot am KSSG sowie zusätzliche Informationen am Ende des Kapitels unter Quellen/Links (Seite 58)

Medikamentöse Rauchstopp-Unterstützung

Rauchentwöhnung: Pharmakologische Therapie

Abb. 2 Basierend auf: Ärztliche Rauchstoppberatung; 3. Auflage: Aveyard P et al. 2015; DGK AWMF-S3 Leitlinie «Rauchen und Tabakabhängigkeit: Screening, Diagnostik und Behandlung»

- Empfehlung zur medikamentösen Unterstützung, da sich damit die Chance auf einen erfolgreichen Rauchstopp signifikant erhöht
- Die Wahl des Medikaments ist abhängig von der Schwere der Nikotinabhängigkeit, möglichen Kontraindikationen und Patienten-

- wunsch (siehe Abb. 2 «Pharmakologische Therapie» und Tab. 2 «Medikamente - Anwendungsinformationen»)
- E-Learning: Rauchstopp und Medikation bei stationären Patienten am KSSG

Medikamente - Anwendungsinformationen

Pflaster 24 Std. Nicotinell-Pflaster 21 mg (stark, Stufe) Dosisstärke je nach Nikotinabhängigkeit (siehe Tab. «Pharmakologische Therapie» Seite 56) Dosisreduktion auf schwächeres Pflaster nach 2-4 Wochen Niedrigste Dosis je nach Bedarf bis zu 6-12 Monate beibehalten. Auf unbehaarter Haut anwenden und Applikationsstelle jeden Tag wechseln. Mundspray Nicorette Sprüh- Lösung 1 mg/Sprühstoss 1-2 Sprühstösse alle 30-60 Min. (max. 65/Tag) über 6 Wochen. All- mählich reduzieren. Lösung 2 bie Kombinationstherapie mit Pflaster: max. 30 Sprühstösse/Tag. Die Lösung im Mund zerstäuben, das Einatmen dabei vermeiden und einige Sekunden nach dem Sprühstoss nicht schlucken. Kaugummi Nicorette / Nicotinell /Nicostop 2 mg/4 mg 8-12 Kaug./Tag über 4 Wochen (max. 15/Tag). Allmählich reduzieren. Bei Kombinationstherapie mit Pflaster: max. 6 Kaugummis/Tag. 20-30 Sekunden kauen, anschliessend den Kaugummi zwischen Zahnfleisch und Wange behalten, auf diese Weise 30 Min. lang mit Pausen kauen («chew and park»). Lutschtablette Nicotinell 1 mg/2 mg Sublingualtablette Nicotrette Microtab 2 mg/4 mg Sublingualtablette Nicorette Microtab 2 mg/4 mg Sublingualtablette Nicorette Microtab 2 mg/4 mg Ch-12 Tabl./Tag über 4 Wochen (max. 15/Tag). Allmählich reduzieren. Bei Kombinationstherapie mit Pflaster: max. 6 Tabl./Tag. Unter der Zunge zergehen lassen. Inhalator Nicorette-Inhaler 10 mg Champix 1. bis 3. Tag: 1× 0.5 mg/Tag: 4. bis 7. Tag: 2× 0.5 mg/Tag: ab dem 8. Tag: 2× 1 mg/Tag (11 Wochen): Rauchstopp normalerweise für den 8. Tag festlegen (auch vorher möglich) Dauer: 3 Monate bis zu 6-12 Monaten, falls erforderlich Kosten werden bei Nachweis hoher Nikotinabhängigkeit (Fagerström- Score > 6 Punkte) von der KK übernommen.		7 ii wonaan gomor madonon
Nicotinell-Pflaster 21 mg (stark, Stufe 1), 14 mg (mittel, Stufe 2), 7 mg (niedrig, Stufe 3) Mundspray Nicorette Sprüh- Lösung 1 mg/Sprühstoss Micorette / Nicotinell / Nicostop 2 mg/4 mg Nicorette / Nicotinell / Nicostop 2 mg/4 mg Lutschtablette Nicotinell 1 mg/2 mg Sublingualtablette Nicorette-Inhaler 10 mg Sche Therapie» Seite 56) Dosisreduktion auf schwächeres Pflaster nach 2–4 Wochen Auf unbehaarter Haut anwenden und Applikationsstelle jeden Tag wechseln. Nicorette Sprüh- Es Kaugumti Auf unbehaarter Haut anwenden und Applikationsstelle jeden Tag wechseln. 1-2 Sprühstösse alle 30–60 Min. (max. 65/Tag) über 6 Wochen. All- mähllich reduzieren. Bei Kombinationstherapie mit Pflaster: max. 30 Sprühstösse/Tag. Die Lösung im Mund zerstäuben, das Einatmen dabei vermeiden und einige Sekunden nach dem Sprühstoss nicht schlucken. 8-12 Kaug./Tag über 4 Wochen (max. 15/Tag). Allmähllich reduzieren. Bei Kombinationstherapie mit Pflaster: max. 6 Kaugummis/Tag. 20–30 Sekunden kauen, anschliessend den Kaugummi zwischen Zahnfleisch und Wange behalten, auf diese Weise 30 Min. lang mit Pausen kauen («chew and park»). 8-12 Tabl./Tag über 4 Wochen (max. 15/Tag). Allmählich reduzieren. Bei Kombinationstherapie mit Pflaster: max. 6 Tabl./Tag. Unter der Zunge zergehen lassen. 6-12 Inhalerpatronen/Tag über 4 Wochen (max. 16/Tag). Allmähliche Reduktion. Bei Kombinationstherapie mit Pflaster: max. 4 Inhalerpatronen/Tag. Wiederholte Inhalationen von kurzer Dauer während 30 Min. Vareniclin Champix 0.5 mg/1 mg 1. bis 3. Tag: 1× 0.5 mg/Tag: 4. bis 7. Tag: 2× 0.5 mg/Tag: ab dem 8. Tag: 2× 1 mg/Tag (11 Wochen); Rauchstopp normalerweise für den 8. Tag: 2× 1 mg/Tag (11 Wochen); Rauchstopp normalerweise für den 8. Tag: 2× 1 mg/Tag (11 Wochen); Rauchstopp normalerweise für den 8. Tag: 2× 1 mg/Tag (11 Wochen); Rauchstopp normalerweise für den 8. Tag: 2× 1 mg/Tag (11 Wochen); Rauchstopp normalerweise für den 8	Nikotinsubstitution	
Nicorette Sprüh- Lösung I mg/Sprühstoss Mählich reduzieren. Bei Kombinationstherapie mit Pflaster: max. 30 Sprühstösse/Tag. Die Lösung im Mund zerstäuben, das Einatmen dabei vermeiden und einige Sekunden nach dem Sprühstoss nicht schlucken. Kaugummi Nicorette / Nicoti- Bei Kombinationstherapie mit Pflaster: max. 6 Kaugummis/Tag. 20–30 Sekunden kauen, anschliessend den Kaugummis/Tag. 20–30 Sekunden kauen, anschliessend den Kaugummis/Tag. 20–30 Sekunden kauen, anschliessend den Kaugummis wischen Zahnfleisch und Wange behalten, auf diese Weise 30 Min. lang mit Pausen kauen («chew and park»). Lutschtablette Nicoriell I mg/2 mg 8–12 Tabl./Tag über 4 Wochen (max. 15/Tag). Allmählich reduzieren. Bei Kombinationstherapie mit Pflaster: max. 6 Tabl./Tag. Unter der Zunge zergehen lassen. Inhalator Nicorette-Inhaler 10 mg 6–12 Inhalerpatronen/Tag über 4 Wochen (max. 16/Tag). Allmählich Reduktion. Bei Kombinationstherapie mit Pflaster: max. 4 Inhalerpatronen/Tag. Wiederholte Inhalationen von kurzer Dauer während 30 Min. Vareniclin Champix 1. bis 3. Tag: 1× 0.5 mg/Tag: 4. bis 7. Tag: 2× 0.5 mg/Tag: ab dem 8. Tag: 2× 1 mg/Tag (I1 Wochen): Rauchstopp normalerweise für den 8. Tag festlegen (auch vorher möglich) Dauer: 3 Monate bis zu 6–12 Monaten, falls erforderlich Kosten werden bei Nachweis hoher Nikotinabhängigkeit (Fagerström-	Nicotinell-Pflaster 21 mg (stark, Stufe 1), 14 mg (mittel, Stufe 2), 7 mg	sche Therapie» <u>Seite 56</u>) Dosisreduktion auf schwächeres Pflaster nach 2–4 Wochen Niedrigste Dosis je nach Bedarf bis zu 6–12 Monate beibehalten. Auf unbehaarter Haut anwenden und Applikationsstelle jeden Tag
Nicorette / Nicotinell / Nicostop 2 mg/4 mg Lutschtablette Nicotinell 1 mg/2 mg Sublingualtablette Nicorette Microtab 2 mg/4 mg Sublingualtablette Nicorette Microtab 2 mg/4 mg Sublingualtablette Nicorette Microtab 2 mg/4 mg Inhalator Nicorette-Inhaler 10 mg Champix 0.5 mg/1 mg 1. bis 3. Tag: 1× 0.5 mg/Tag: 4. bis 7. Tag: 2× 0.5 mg/Tag: ab dem 8. Tag: 2× 1 mg/Tag (11 Wochen); Rauchstopp normalerweise für den 8. Tag festlegen (auch vorher möglich) Dauer: 3 Monate bis zu 6-12 Monaten, falls erforderlich Kosten werden bei Nachweis hoher Nikiotinabhängigkeit (Fagerström-	Nicorette Sprüh- Lösung	mählich reduzieren. Bei Kombinationstherapie mit Pflaster: max. 30 Sprühstösse/Tag. Die Lösung im Mund zerstäuben, das Einatmen dabei vermeiden und
Nicotinell 1 mg/2 mg Sublingualtablette Nicorette Microtab 2 mg/4 mg Inhalator Nicorette-Inhaler 10 mg Champix 0.5 mg/1 mg 1. bis 3. Tag: 1× 0.5 mg/Tag: 4. bis 7. Tag: 2× 0.5 mg/Tag: ab dem 8. Tag: 2× 1 mg/Tag (11 Wochen); Rauchstopp normalerweise für den 8. Tag festlegen (auch vorher möglich) Dauer: 3 Monate bis zu 6-12 Monaten, falls erforderlich Kosten werden bei Nachweis hoher Nikotinabhängigkeit (Fagerström-	Nicorette / Nicoti- nell /Nicostop	Bei Kombinationstherapie mit Pflaster: max. 6 Kaugummis/Tag. 20–30 Sekunden kauen, anschliessend den Kaugummi zwischen Zahnfleisch und Wange behalten, auf diese Weise 30 Min. lang mit
Nicorette Microtab 2 mg/4 mg Bei Kombinationstherapie mit Pflaster: max. 6 Tabl./Tag. Unter der Zunge zergehen lassen. Inhalator Nicorette-Inhaler 10 mg 6–12 Inhalerpatronen/Tag über 4 Wochen (max. 16/Tag). Allmähliche Reduktion. Bei Kombinationstherapie mit Pflaster: max. 4 Inhalerpatronen/Tag. Wiederholte Inhalationen von kurzer Dauer während 30 Min. Vareniclin Champix 0.5 mg/1 mg 1. bis 3. Tag: 1× 0.5 mg/Tag; 4. bis 7. Tag: 2× 0.5 mg/Tag; ab dem 8. Tag: 2× 1 mg/Tag (11 Wochen); Rauchstopp normalerweise für den 8. Tag festlegen (auch vorher möglich) Dauer: 3 Monate bis zu 6–12 Monaten, falls erforderlich Kosten werden bei Nachweis hoher Nikotinabhängigkeit (Fagerström-	Nicotinell	
Nicorette-Inhaler 10 mg Reduktion. Bei Kombinationstherapie mit Pflaster: max. 4 Inhalerpatronen/Tag. Wiederholte Inhalationen von kurzer Dauer während 30 Min. Vareniclin Champix 0.5 mg/1 mg 1. bis 3. Tag: 1× 0.5 mg/Tag: 4. bis 7. Tag: 2× 0.5 mg/Tag: ab dem 8. Tag: 2× 1 mg/Tag (11 Wochen): Rauchstopp normalerweise für den 8. Tag festlegen (auch vorher möglich) Dauer: 3 Monate bis zu 6–12 Monaten, falls erforderlich Kosten werden bei Nachweis hoher Nikotinabhängigkeit (Fagerström-	Nicorette Microtab	Bei Kombinationstherapie mit Pflaster: max. 6 Tabl./Tag.
Champix 1. bis 3. Tag: 1× 0.5 mg/Tag; 4. bis 7. Tag: 2× 0.5 mg/Tag; ab dem 8. Tag: 2× 1 mg/Tag (11 Wochen); Rauchstopp normalerweise für den 8. Tag festlegen (auch vorher möglich) Dauer: 3 Monate bis zu 6-12 Monaten, falls erforderlich Kosten werden bei Nachweis hoher Nikotinabhängigkeit (Fagerström-	Nicorette-Inhaler	Reduktion. Bei Kombinationstherapie mit Pflaster: max. 4 Inhalerpatronen/Tag.
0.5 mg/1 mg 2× 1 mg/Tag (11 Wochen): Rauchstopp normalerweise für den 8. Tag festlegen (auch vorher möglich) Dauer: 3 Monate bis zu 6-12 Monaten, falls erforderlich Kosten werden bei Nachweis hoher Nikotinabhängigkeit (Fagerström-	Vareniclin	
		2×1 mg/Tag (11 Wochen); Rauchstopp normalerweise für den 8. Tag festlegen (auch vorher möglich) Dauer: 3 Monate bis zu 6-12 Monaten, falls erforderlich Kosten werden bei Nachweis hoher Nikotinabhängigkeit (Fagerström-

Bupropion	
Zyban 150 mg	1. bis 6. Tag: 1× 150 mg/Tag; ab 7. Tag: 2× 150 mg/Tag (7–11 Wochen); Rauchstopp zwischen dem 8. und 14. Tag festlegen Dauer: 2–3 Monate bis zu 6–12 Monaten, falls erforderlich

Tab. 1 Basierend auf: Ärztliche Rauchstoppberatung; 3. Auflage: Aveyard P et al. 2015; DGK AWMF-S3 Leitlinie «Rauchen und Tabakabhängigkeit: Screening, Diagnostik und Behandlung»

E-Zigaretten/ENDS (electronic nicotine delivery systems)

- Die Anwendung von E-Zigaretten kann nicht standardmässig als Rauchstopphilfe empfohlen werden.
- Für erwachsene Raucher, welche einen Ausstieg mithilfe professioneller Beratung und Medikamenten nicht schaffen, kann es eine vermutlich weniger schädliche Alternative darstellen.
- Die <u>Rauchstoppberatung am KSSG</u> führt entsprechende Beratungen durch.

Quellen/Links

- Ärztliche Rauchstoppberatung; 3. Auflage: Aveyard P, Begh R, Parsons A et al. Brief opportunistic smoking cessation interventions: a systematic review and meta-analysis to compare advice to quit and offer of assistance. Addiction. 2012 Jun;10. https://onlinelibrary.wiley.com/doi/10.1111/j.1360-0443.2011.03770.x
- DGK AWMF-S3 Leitlinie: <u>«Rauchen und Tabakabhängigkeit: Screening, Diagnostik und Behandlung»</u> 01/2021
- · Ärztliche Rauchstoppberatung, 3. Auflage
- · www.guidelines.ch
- · Frei von Tabak Homepage: https://www.freivontabak.ch
- · Rauchstopp-Sprechstunde KSSG: Homepage, Intranet
- E-Learning (Schulung/Videos): <u>Wissensbörse KSSG «Kurz und einfach erklärt»</u> oder Lungenliga St Gallen Homepage

Dr. Susanne Pohle
Prof. Dr. Martin Brutsche

Schlafbezogene Atmungsstörungen

Definition

Gruppe der schlafbezogenen Atmungsstörungen umfasst die obstruktive Schlafapnoe (OSA), die zentrale Schlafapnoe (ZSA) und die nächtliche alveoläre Hypoventilation.

Die obstruktive Schlafapnoe ist durch wiederholtes, vollständiges oder partielles Kollabieren der oberen Atemwege während des Schlafs gekennzeichnet, was zu Sauerstoffentsättigungen, kurzen Weckreaktionen (Arousal) oder komplettem Aufwachen führt. Die daraus resultierende sympathische Überaktivierung führt zu unerholsamem Schlaf. arterieller Hypertonie, verminderter Glukosetoleranz und erhöhter kardiovaskulärer Morbidität und Mortalität sowie häufigeren Verkehrsunfällen aufgrund der Hypersomnie.

Diagnose und Klassifikation

Atemereignisse mit Abnahme der Atemzugstiefe um > 90% und einer Dauer von mindestens 10 Sekunden werden als Apnoen bezeichnet, während Atemereignisse mit einer Verminderung der Atemzugstiefe um > 30%, einer Dauer von mindestens 10 Sekunden und einem Abfall der Sauerstoffsättigung um wenigstens 3% und/oder einem Arousal als Hypophoen definiert sind.

Der Index von Apnoen/Hypopnoen (AHI) pro Schlafstunde ist die Messgrösse für den Schweregrad der nächtlichen Atmungsstörung. Ein AHI von 5-15 wird als leichtgradige, ein AHI 15-30 als mittelschwere und ein AHI > 30 als schwergradige Schlafapnoe bezeichnet. Es wird zwischen obstruktiven Ereignissen mit inspiratorischem Kollaps der oberen Atemwege und zentralen Ereignissen als Folge einer Atemantriebsstörung unterschieden. Die alveoläre Hypoventilation, definiert als pCO₂ > 6.0 kPa tagsüber, kann Adipositas-assoziiert, als Folge von Thoraxdeformitäten (Kyphoskoliose, schwere restriktive Ventilationsstörung) oder bei neuromuskulären Erkrankungen auftreten.

	Obstruktive Schlafapnoe OSA	Zentrale Schlafapnoe ZSA (Cheyne-Stokes-Atmung, Biot'sche Atmung)
Pathophysiologie	Kollaps der oberen Atem- wege	Atemantriebsstörung
Risikofaktoren (wichtigste)	Adipositas Retrognathie Zerebrovaskulärer Insult Alkohol, Nikotin, Benzodiazepine	Herzinsuffizienz Zerebrovaskulärer Insult Morphine Aufenthalt in grosser Höhe
Klinische Hinweise	Tagesschläfrigkeit, Schnar- chen, Retrognathie	Periodische Atmung (auch tagsüber)

Screening nach schlafassoziierten Atmungsstörungen

Ein Screening auf Schlafapnoe ist bei Populationen mit hoher Prävalenz sinnvoll, da mit einer effizienten Therapie Lebensqualität und Prognose der Patienten effektiv verbessert werden können. Als Trigger für ein Screening gelten Patienten mit Adipositas, Herzinsuffizienz, Vorhofflimmern, therapierefraktärer Hypertonie, Typ-2-Diabetes, nächtlichen Herzrhythmusstörungen, Stroke und pulmonaler Hypertonie. Das Screening besteht in einer gezielten Anamnese bezüglich Schnarchen. Schlafstörung, nächtlicher Atempausen und Tages-Hypersomnie mit Verwendung eines validierten Fragebogens, z.B. mit der Epworth Schläfrigkeitsskala ESS. Die Klinik ist für die Indikation zur Weiterabklärung wichtiger als der Befund einer allfälligen Screening-Pulsoxymetrie.

Abklärung

Bei entsprechendem Verdacht ist eine fachärztliche Weiterabklärung mittels respiratorischer Polygrafie (PG) oder Polysomnografie (PSG) mit Aufzeichnung des nasalen nächtlichen Atemflusses, der Thorax- und Abdomenbewegungen, der Pulsoxymetrie und im Falle der PSG zusätzlich der Schlafstadien und der Infrarot-Videoaufzeichnung indiziert. Diese Untersuchungen werden ambulant (PG) oder mittels einer Nacht im Schlaflabor (PSG) durchgeführt.

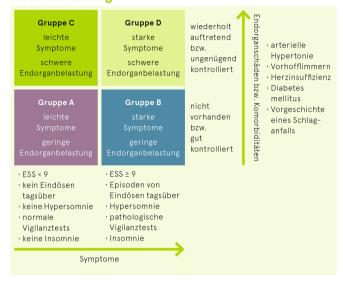
Fragebogen zur Erfassung der Tagesschläfrigkeit («Epworth Sleepiness Scale», ESS)

Wie leicht fällt es Ihnen, in folgenden Situationen einzuschlafen?

Gemeint ist nicht nur das Gefühl, müde zu sein, sondern auch wirklich einzuschlafen. Die Frage bezieht sich auf das übliche tägliche Leben der vergangenen Wochen. Auch wenn Sie einige der beschriebenen Tätigkeiten in letzter Zeit nicht ausgeführt haben, versuchen Sie, sich vorzustellen, welche Wirkung diese auf Sie gehabt hätten. Wählen Sie aus der folgenden Skala die für die entsprechende Frage am besten zutreffende Zahl (Zutreffendes bitte ankreuzen):

Tätigkeit	Punkte*
Sitzen und lesen	0 01 02 03
Fernsehen	0 01 02 03
Sitzen an einem öffentlichen Ort (z.B. Theater, Sitzung, Vortrag)	0 01 02 03
Als Mitfahrer im Auto während einer Stunde ohne Halt	0 01 02 03
Sich hinlegen, um am Nachmittag auszuruhen, wenn es die Umstände erlauben	0 01 02 03
Sitzen und mit jemandem sprechen	0 01 02 03
Ruhig sitzen nach Mittagessen ohne Alkohol	0 01 02 03
Im Auto beim Stopp an einer Verkehrsampel während einiger Minuten	0 01 02 03

^{* 0 =} würde nie einschlafen


Nach: Bloch KE, Schoch OD, Zhang JN, Russi EW. German Version of the Epworth Sleepiness Scale, Respiration 1999:66:440-447; Johns MW: Anew Method for measuring daytime sleepiness. Sleep 1991;14:540-554

^{1 =} würde kaum einschlafen

^{2 =} würde möglicherweise einschlafen

^{3 =} würde mit grösster Wahrscheinlichkeit einschlafen

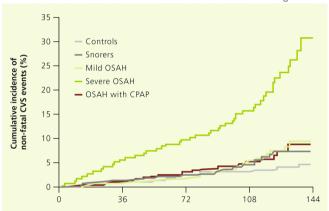
Phänotypisierung der obstruktiven Schlafapnoe/ **ABCD-Einteilung**

Nach: Randerath W, Bassetti CL, Bonsignore MR, et al. Challenges and perspectives in obstructive sleep apnoea. Eur Respir J 2018; 52: 1702616; https://doi.org/10.1183/ 13993003.02616-2017

Die obstruktive Schlafapnoe wird am Schlafzentrum neben dem Apnoe-Hypophoe-Schweregrad zusätzlich mit der Angabe der Impakt-Gruppe ABCD graduiert. Die Gradierung mit der Impakt-Gruppe soll die Therapieentscheidung unterstützen - unabhängig von der bisher starken Fixierung auf den AHI. In die Gradierung werden Faktoren einbezogen, welche die unterschiedlichen klinischen und pathophysiologischen Phänotypen sowie relevante Komorbiditäten widerspiegeln. Auch berücksichtigt die Einteilung die schlechte Korrelation zwischen AHI und Tagessymptomen wie Schläfrigkeit. Der Nachweis einer OSA anhand des AHI ist grundsätzlich vorausgesetzt, die Anzahl der respiratorischen Ereignisse geht iedoch nicht in die Gradierung ein. Je nach

Impakt auf subjektive und/oder objektive Messungen der Tagesschläfrigkeit einerseits und das Vorhandensein oder Fehlen von Endorganschädigung andererseits werden die Patienten mit einem AHI > 15/h in die entsprechende Gruppe eingeteilt. Die Diagnose umfasst somit folgende Elemente: Mittelschwere/schwere (entsprechend AHI) obstruktive Schlafapnoe, Impakt-Gruppe A-D.

Therapie


Die Standardtherapie bei leichter obstruktiver Schlafapnoe (AHI 5-15/ Std.) besteht in einer Umstellung des Lebensstils mit Gewichtsreduktion, Rauchstopp und Alkoholreduktion. Bei lageabhängiger Schlafapnoe (definiert als AHI in Rückenlage grösser als wenigstens das Doppelte des AHI in anderen Positionen) kann eine Lagetherapie mittels Hilfsmittel wie Rucksack, Lagerungsgürtel oder Tennisball versucht werden. Die nächtliche Überdrucktherapie mittels CPAP (engl. continuous positive airway pressure) ist die Erstlinienbehandlung bei mittelschwerer (AHI 15-30/Std.) und schwerer (AHI > 30/Std.) obstruktiver Schlafapnoe. Die CPAP-Geräte werden durch die Lungenliga instruiert und auf Kosten der Krankenkasse (Pflichtleistung) vermietet. Die Effizienz der CPAP-Therapie zur Normalisierung des AHI liegt bei > 90%, die Akzeptanz nach 12 Monaten bei elektiver Einschulung in unserem Zentrum um 80%. Das kardiovaskuläre Risiko nach Therapie der Schlafapnoe und Nutzung von > 4 Std./Nacht entspricht demienigen der Kontrollpopulation.

Therapiealternativen bei Schlafapnoe-Patienten mit CPAP-Unverträgsind die Unterkiefer-Protrusions-Schiene, eine lichkeit Gewichtsreduktion (konservativ oder mittels bariatrischer Chirurgie) oder die Implantation eines Zungengrundschrittmachers, welche durch die HNO-Klinik des KSSG angeboten wird.

Auch bei der symptomatischen zentralen Schlafapnoe wird nach Ausschluss einer behandelbaren Ursache (optimale Herzinsuffizienzbehandlung. Absetzen der Morphine) ab mittlerem Schweregrad eine CPAP-Therapie empfohlen. Leider sprechen nur 50% der Patienten auf die Behandlung optimal an (fehlende Unterdrückung der Atempausen und Entsättigungen oder fehlende Verbesserung der Klinik).

Alternativ können speziellere Beatmungsformen mittels adaptiver Servoventilation ASV (jedoch nur bei LVEF > 45%) oder die nichtinvasiver Ventilation (NIV) oder eine nächtliche Sauerstoffapplikation versucht werden.

Kumulativer %-Anteil von nicht-tödlichen kardiovask. Ereignissen

Nach: Marin JM, Carrizo SJ, Vicente E et al. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet, 2005 Mar 19-25:365(9464):1046-53: https://doi.org/10.1016/S0140-6736(05)71141-7

Dr. Christian Gysin Prof. Dr. Otto Schoch

Chronische Niereninsuffizienz

Einleitung

Kardiovaskuläre Erkrankungen sind der Hauptgrund für die sehr hohe Mortalität von Patienten mit dialvsebedürftiger Niereninsuffizienz (End Stage Renal Disease, ESRD). Im Vergleich mit der Normalbevölkerung erreicht die kardiovaskuläre Mortalität bei ESRD-Patienten mindestens das 10-fache, bei jungen Erwachsenen sogar mehr als das 100-fache Risiko. Dieses Risiko ist weniger durch vaskulookklusive Ereignisse wie Myokardinfarkte als vielmehr durch plötzlichen Herztod, Arrhythmien und chronische Herzinsuffizienz erklärt. Auch scheinen für dieses spezielle Kollektiv die generell anerkannten Risikofaktoren wie hoher BMI und hoher Cholesterinspiegel eher vor dem Tod zu schützen, weshalb diese Population bezüglich Risikostratifizierung durch den Nephrologen speziell evaluiert und behandelt werden sollte.

Patienten mit chronischer Nierenerkrankung (Chronic Kidney Disease, CKD), die keiner Dialysetherapie bedürfen, verhalten sich bezüglich der bekannten kardiovaskulären Risikofaktoren wie die Normalbevölkerung und sollten entprechend behandelt werden. Neuere Daten zeigen bereits einen Anstieg der kardiovaskulären Mortalität bei einer Glomeruläre Filtrationsrate, eGFR < 90 ml/min/1.73 m² oder einer Albuminurie von 3-30 mg/mmol Kreatinin (entsprechend einer Albuminurie bis 300 mg/Tag). Dabei geht die renale Prognose mit dem kardiovaskulären Risiko parallel (siehe Darstellung). Bei schwerer CKD im Stadium 4 ist schliesslich das Risiko abhängig von der Albuminurie 5- bis 10-fach erhöht.

Der Gebrauch der CKD-EPI-Formel oder alternativ die eGFR nach Cystatin C hat die Früherkennung von milden Formen der CKD erleichtert und sollte deshalb zur GFR-Bestimmung konsequent eingesetzt werden. Auch ist das Screening für die Albuminurie (Albumine-Kreatinin Ratio, ACR) im Spot-Urin einfach und in ieder Sprechstunde durchführbar.

			ď,				±.		
	Symptome		(exemplarisch beginnend, fliessende Übergänge, off erst spät symptomatisch)	Asymptomatisch	Hypertonie	Ödeme	Müdigkeit, Schlaflosigkeit Gastrointestinale	Symptome, Juckreiz, Restless legs	Urämie
Chronische Niereninsuffizienz	Laborveränderungen	H	yperkaliämie, Azidose						
		р	Hyperpara, Hyper- hosphatämie						
			Anämie						
		Abnormale Urinbefunde							
	Persistierende Albuminurie	A3	> 300 mg/Tag		H				
		A2	30- 300 mg/Tag						
		A1	< 30 mg/Tag						
	2 (-10)		n A1-3	≥ 90	68-09	45-59	30-44	15-29	< 15
che Niere	Mortalität der CKD n.s., 1-1.5, 1.5-2, >2 (-10) (Hazard Ratios)		KDIGO 2012 GFR-Stadien G1–5 Albuminurie-Stadien A1–3	5	G 2	G3a	G3b	64	G5
Chronis			KDIGO 2012 GFR-Stadien Albuminurie			GFR-	-Kategorie	(ml/Min./	(1.73 m²)

Tab.: Chronische Niereninsuffizienz

Abklärung und Therapie

Die Klassifizierung der CKD erfolgt entsprechend der von KDIGO 2012 vorgeschlagenen Einteilung nach Ursache (Cause), GFR-Kategorie und Albuminurie-Kategorie (CGA). Alle Patienten mit erhöhtem Risiko für eine CKD (Arterielle Hypertonie, Diabetes mellitus, Herz- Kreislauf Erkrankungen, nephrotoxische Arzneimitteltherapien, Adipositas, pos. Familienanamnese und mit Systemerkrankungen wie z. B. HIV. SLE. Vaskulitis) sollten jährlich auf das Vorliegen einer CKD gescreent werden. Dazu werden die Albumin-Kreatinin-Ratio (ACR) im Spot-Urin und ein Serumkreatinin (oder Cystatin C) zur Schätzung der GFR bestimmt. Eine CKD besteht, wenn entweder eine eGFR < 60 ml/min/1.73 m² oder eine ACR > 3 mg/mmol für > 3 Monate vorliegt.

Ab einer eGFR < 45 ml/min/1.73 m² oder einer Albuminurie > 300 mg/ Tag respektive Proteinurie > 500 mg/Tag sollte die Zuweisung zu einem Nephrologen erfolgen, entsprechend der hellviolett eingefärbten Risikokategorie. Auch eine anhaltende, nicht anders erklärbare Erythrozyturie, unkontrollierbare Hypertonie in iedem Stadium der CKD oder ein rezidivierendes Steinleiden sollten fachärztlich beurteilt werden.

Progressionshemmung

Ab dem Stadium A2 (ACR > 3 mg/mmol) ist zusätzlich zur maximal verträglichen RAAS-Blockade der Einsatz eines für die CKD zugelassenen SGLT2-Hemmers empfohlen, wenn die eGFR > 25 ml/min/1.73 m² beträgt. Aktuell ist die Behandlung unabhängig vom Typ 2 Diabetes oder Herzinsuffizienz erst bei Dapagliflozin ab einer ACR > 20 mg/mmol und eGFR 25-75 ml/min/1.73 m² zugelassen.

Komplikationen und Folgeerkrankungen

Hypertonie

- Zielblutdruck bei CKD A1 < 140/90, ab A2 < 130-80 mmHg
- Erste Wahl ab Stadium A2: ACE-Hemmer oder ARB. Die Wahl des Antihypertensivums richtet sich ansonsten nach Co-Morbiditäten (siehe ausführliches Kapitel)
- · Eine Kombination von ACE-H. und ARB ist nicht mehr empfohlen
- Bei älteren Patienten und insbesondere beim Einsatz von Vasodilatatoren empfiehlt sich die regelmässige Überprüfung der

Orthostase

Anämie

- Diagnostik: Blutbild, Retikulozyten, Eisenstatus (Fe, Ferritin, Transferrin, Transferrinsättigung) und Vitamine (B₁₂, Folsäure)
- · **Kein** EPO oder löslichen Transferrinrezeptor messen (nicht relevant)
- Wenn Hb-Anstieg angestrebt wird: **Eisen intravenös**, bis Transferrinsättigung > 30% und Ferritin > 500 μ g/l
- ESA-Therapie (Erythropoiesis-Stimulating Agents): bei Hb < 100 g/l und Transferrinsättigung > 30% resp. Ferritin > 500 µg/l
- **Ziel-Hb unter ESA:** 110 ± 10 g/l (unter hoch dosiertem ESA Risiko von kardiovaskulären Ereignissen erhöht)

Hyperphosphatämie, Hyperparathyreoidismus

- · Serumphosphat mit **Phosphatbindern** im Normbereich halten
- · 25-OH-Vitamin-D-Mangel korrigieren
- 1.25-OH-Vitamin-D oder Analoga gemäss Ziel-iPTH erst bei korrigiertem 25-OH-Vitamin-D-Spiegel
- · Ziel-iPTH abhängig von der Nierenfunktion

Hyperkaliämie

 Bei Hyperkaliämie Azidose suchen und korrigieren, RAAS-Blockade reduzieren, Schleifendiuretika einsetzen. Allenfalls Ionentauscher. Ggf. nephrologische Beurteilung

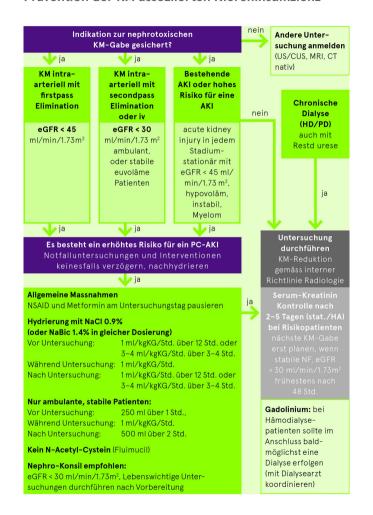
Risikofaktoren

Hypercholesterinämie

- Ab dem Stadium G3 a priori unabhängig vom Ausgangs-LDL-Cholesterin oder Komorbiditäten eine Statintherapie beginnen
- · Ab Vorliegen einer Albuminurie ist eine Statintherapie emfohlen (A2 und A3)
- 7iel-LDL-C im CKD Stadium G3 < 18 mmol/L im Stadium G4 ist. der Einsatz von Statinen umstritten, ein Ziel-LDL-C, nicht validiert. eine gut verträgliche Dosis wird fortgeführt.
- Im Stadium G5 profitieren die Patienten nicht von einer Statintherapie, bei Patienten auf der Warteliste für eine Nierentransplantation wird sie fortgeführt.

Diabetes

- eGFR < 30 ml/min/173m2 (G4): kein Metformin GLP-1RA (BML> 28) oder DPP4 Hemmer +/-Insulin, etablierten SGLT2-Hemmer fortführen
- eGFR < 45 ml/min/1 73m2 (G3b): 1/2 Dosis Metformin + SGLT2-Hemmer oder GLP-1 RA (BMI > 28), evtl. kombinieren +/-Insulin
- · Einsatz von Finerenon erwägen sobald vergütet und keine Kontraindikationen
- · Ziel HbA_{1c} abhängig von Alter, Diabetesdauer und Komorbiditäten, in der Regel bei fortgeschrittener Niereninsuffizienz < 7.5%


Quelle/Link

www.kdigo.org

Dr. Christian Bucher Dr. Isabelle Binet

Prävention der KM assoziierten Niereninsuffizienz

Erläuterungen zur Grafik

Stationär, instabil, hypovoläm, Myelom

Stationäre Patienten oder akut erkrankte Patienten auf der Notfallstation haben unabhängig von der Kontrastmittelgabe ein erhöhtes Risiko einer akuten Nierenschädigung, Insbesondere Patienten mit einem instabilen Kreislauf oder akuter Hypovolämie, aber auch Patienten mit anderweitig vermindertem intraarteriellen Volumen, wie Patienten mit Pankreatitis, Ileus, Herzinsuffizienz oder Leberzirrhose sind stark gefährdet. Ziel einer Akutbehandlung ist es immer, unabhängig von der Kontrastmittelgabe, das intravasale resp. intraarterielle Volumen zu korrigieren. Um das Gesamtrisiko zu vermindern soll die Vorbereitung bereits bei einer eGFR < 45 ml/min/1.73 m² erfolgen. Der stärkste unabhängige Risikofaktor für ein PC-AKI stellt das multiple Myelom dar. vor allem bei bestehender Niereninsuffizienz.

Patienten mit AKI (acute Kidney Injury)

Bei Patienten mit einer bestehenden akuten Nierenschädigung sollte idealerweise mit einer Kontrastmitteluntersuchung gewartet werden. bis sich die Nierenfunktion erholt hat. Patienten, bei denen mit der Untersuchung nicht zugewartet werden kann, sollen unabhängig von der aktuellen Funktion mittels Hydrieren vorbereitet werden. Eine wichtige diagnostische oder gar therapeutische Untersuchung zu Verzögern, stellt oft das grössere Risiko dar. In der Regel erholt sich die Nierenfunktion trotz Kontrastmittelgabe.

Allgemeine Massnahmen

Das Stoppen von Medikamenten, die zu einer renalen Vasokonstriktion führen (ACE-Hemmer, ARB) ist wahrscheinlich nicht notwendig (unklare Datenlage), oder kann sogar zur Verschlechterung einer Herzinsuffizienz oder hypertensiven Entgleisung führen. NSAR sollten per Untersuchungstag pausiert werden. Metformin, welches zu einer Laktatazidose im Falle einer akuten Niereninsuffizienz führen kann, wird zum Zeitpunkt der Untersuchung pausiert. Bei Patienten unter Aminoglykosid-Antibiotika sollten 24-48 Std. nach KM-Gabe ein Spiegel überprüft

N-Acetyl-Cystein ist obsolet zur Prophylaxe einer PC-ACI.

Hydrierung

Die Vor- und Nachhydrierung hat primär mit NaCl 0.9% iv zu erfolgen. NaBic 1.4% ist gegenüber NaCl 0.9% gleichwertig und kann bei Azidose eingesetzt werden. Sofern der Patient dies kardial toleriert, kann auch ein rasches Hydrierungsschema gewählt werden. Bei ambulanten, stabilen Patienten ist das Risiko sehr gering, weshalb ein verkürztes Schema zur Anwendung kommt.

Definition PC-AKI (post-contrast acute Kidnev Iniury)

Anstieg Serum-Kreatinin > 26.5 mmol/l oder auf das 1.5-fache der Baseline innert 48-72 Std. nach Kontrastmittelexposition.

Renale first- vs. secondpass Exposition

Das Risiko eines PC-AKI steigt an, wenn das Kontrastmittel die Nieren relativ unverdünnt erreicht. 7.B. bei Injektion ins linke Herz, die suprarenale Aorta oder die Nierenarterien. Wenn es distal der Nierenarterien oder peripher injiziert wird, respektive venös gegeben wird, erreicht das KM die Nieren in relativ verdünnter Form, weshalb das Risiko einer PC-AKI geringer ist. Orales Kontrastmittel oder KM in andere Körperhöhlen kann unabhängig von der Nierenfunktion gegeben werden.

KM: Kontrastmittel

Management nach KM-Exposition

Die Messung des Serum-Kreatinins nach der Untersuchung bei Risikopatienten kann selbstverständlich auch beim Hausarzt erfolgen. Die pausierten Medikamente sollten erst wieder gestartet werden, wenn die Nierenfunktion stabil ist. Entsprechend sollte auch mit einer nachfolgenden Kontrastmittelgabe mind, 48 Std. zugewartet werden.

Dr. Christian Bucher

Dr. Isabelle Binet

PD Dr. Lukas Hechelhammer

PD Dr. Daniela Husarik

Kontrastmittel-Allergie und Iod-Expositionsprophylaxe

Kontrastmittel-Allergie

Die Prävalenz einer Hypersensitivitätsreaktion auf monomere, ionische Kontrastmittel (KM) beträgt 3.8-12%, schwere Reaktionen erfolgen in 0.02-0.04%. Für nichtionische KM liegt die Prävalenz bei 0.7-3%. Die meisten Patienten reagieren gegen das KM-Molekül und nicht gegen lod. Es werden eine Soforttypreaktion, welche IgE vermittelt oder nicht-allergisch vermittelt sein kann, und eine Spättypreaktion unterschieden. Das Risiko ist erhöht bei Patienten mit vorhergehenden Reaktionen auf KM-Gabe (falls bekannt, sollte entsprechend ein anderes KM gewählt werden). Eine Prämedikation ist v.a. bei Patienten indiziert mit vorgängiger KM-Reaktion und negativer Allergieabklärung. Letztere sollten zwingend gemäss Schema prämediziert werden. Bei positiver Hauttestung ist ein KM zu berücksichtigen, das sich in der Hauttestung negativ zeigte. Hier kann eine zusätzliche Prämedikation erwogen werden. Die KM-Gabe ist streng kontraindiziert bei Patienten mit schweren Hautreaktionen (Drug reaction with eosinophilia and systemic symptoms (DRESS), akute exanthematische Pustulose (AGEP) oder Steven-Johnson-Syndrom resp. toxisch epidermale Nekrolyse [TEN]). Pat. mit allergischer Reaktion sollten innert 1-6 Monaten allergologisch abgeklärt werden.

Vorbereitungsschema für die elektive Untersuchung

Prednison	50 mg po	am Vorabend und am Morgen der Untersuchung und 1 Std. vor der Untersuchung
Levocetirizin	5 mg po	am Vorabend und am Morgen der Untersuchung und 1 Std. vor der Untersuchung

Vorbereitungsschema vor einer Notfalluntersuchung

Tavegyl	2 mg iv	Injektionsdauer 2-3 Minuten
Solumedrol	125 mg iv	Kurzinfusion (100 ml NaCl 0.9%) über 10-15 Minuten

Vorgehen bei der unerwarteten Kontrastmittelreaktion

Die Behandlung richtet sich nach dem Allergie-/Anaphylaxie-Konzept KSSG. Intranet: www.kssgnet.ch/imd/apo/Anwendung/Merkbltter/Allergie_Anaphylaxie.pdf

lodexpositionsprophylaxe bei Kontrastmittelgabe

lodhaltige KM sind grundsätzlich kontraindiziert bei Patienten mit manifester Hyperthyreose. Daher sollte vor elektiven Untersuchungen bereits im Vorfeld eine TSH-Bestimmung durchgeführt und eine Abklärung/Therapie einer allenfalls vorliegenden Schilddrüsenerkrankung eingeleitet werden.

Bei entsprechender Risikokonstellation (Struma, Schilddrüsenknoten, Autonomie, M. Basedow) kann es nach Exposition gegenüber lodhaltigem KM zur manifesten Hyperthyreose kommen (Peak 3–6 Wochen nach Exposition). Eine medikamentöse Prophylaxe bei Notfall- bzw. dringlicher Indikation zur Gabe von lodhaltigem KM empfiehlt sich in Abhängigkeit der Risikokonstellation sowie des aktuellen TSH-Wertes gemäss nachfolgender Tabelle.

Klinische Situation	Medikamentöse Prophylaxe / Therapie	TSH-Kontrolle
Risikokonstellation* + TSH > 0.5 mU/I	keine	nach 3 Wochen
Risikokonstellation* + TSH 0.3-0.5 mU/I	Irenat 2× 25 Tropfen/Tag po für 7 Tage**	nach 3 Wochen, inkl fT4
TSH 0.1-0.3 mU/I	Irenat 2× 25 Tropfen/Tag po für 7 Tage**	nach 3 Wochen, inkl fT4
bei kardiovaskulärer Komorbidität	zusätzlich Neomercazole 15 mg/ Tag po***	nach 3 Wochen, inkl fT4
TSH < 0.1 mU/l****	Irenat 2× 25 Tropfen/Tag po für 7 Tage** und Neomercazole 15 mg/Tag po***	nach 3 Wochen, inkl fT4

^{*} Struma, Schilddrüsenknoten, Autonomie, M. Basedow

Dr. Marino Quarella

Prof. Dr. Barbara Ballmer-Weber

PD Dr. Stefan Bilz PD Dr. Daniela Husarik

^{**} Beginn der medikamentösen Prophylaxe 2-4 Std. vor der Untersuchung; falls die Therapie

> 3 Tage nach der KM-Exposition eingeleitet wird, sollte ergänzend in jedem Fall ein Thyreostatikum verordnet werden (Neomercazole 15 mg/Tag po für 3 Wochen, dann gemäss TSH-/fT4-Kontrolle).

^{***} Anpassung bzw. Entscheid über Fortführung gemäss TSH-/fT4-Kontrolle nach 3 Wochen, ggf. Rücksprache Endokrinologie

^{****} Bei elektiver Indikation sollte die Untersuchung in dieser Situation verschoben werden.

Prä- und perioperatives Management bei nicht-kardialen Operationen

Ziel: Senkung perioperativer kardialer Komplikationen und Verbesserung der längerfristigen Prognose der Patienten. Festlegung der Abklärungsstrategie erfolgt aufgrund des Risikos des Eingriffes, der körper-Leistungsfähigkeit, des Vorhandenseins Risikoindikatoren und der Messung kardialer Biomarker, Abklärungsgang (Abb. 1): Zuerst Ausschluss einer akuten oder instabilen Herzkrankheit (Tab. 1) unter Berücksichtigung von kürzlich durchgeführten Koronarinterventionen (können zur Verschiebung eines Wahleingriffs zwingen: Tab. 2). Notfallmässige Operationen kurz nach Koronardilatation mit Stenteinlage beinhalten ein sehr hohes perioperatives Risiko und bedürfen einer intensiven interdisziplinären Betreuung durch Chirurgen, Anästhesisten, Kardiologen und Intensiymediziner.

Das weitere Vorgehen richtet sich nach dem Risiko des bevorstehenden Eingriffes (Tab. 3), der körperlichen Leistungsfähigkeit (Tab. 4) sowie den klinischen Risikoindikatoren (Tab. 5).

Wie aus Abbildung 1 hervorgeht, ist bei guter Leistungsfähigkeit und/ oder fehlenden Risikoindikatoren keine weiteren kardialen Abklärungen indiziert

Hingegen müssen Patienten, die nur eingeschränkt leistungsfähig sind und klinische Risikoindikatoren aufweisen, v.a. im Vorfeld gefässchirurgischer Eingriffe, genauer untersucht werden. In einem ersten Schritt werden BNP oder NT-proBNP bestimmt. Sind die Werte nicht erhöht (< 100 ng/l bzw. < 300 ng/l) kann der Patienten ohne weitere Massnahmen der geplanten Intervention unterzogen werden. Sind die Werte aber erhöht, schliesst sich ein kardiologischer Work up an. Bei einer (vermuteten) koronaren Herzkrankheit steht die (bildgebende) Ischämiediagnostik, bei einer Herzinsuffizienz oder der Suche nach Klappenvitien die Echokardiografie im Vordergrund. Die Bestimmung eines natriuretischen Peptids (BNP oder NT-proBNP) ermöglicht v.a. (aber nicht nur) beim Vorliegen einer Herzinsuffizienz eine verbesserte Risikoabschätzung. Wichtig ist der Grundsatz, die Indikationen für invasive Therapien immer auf Basis der allgemein anerkannten kardiologisch-internistischen Kriterien zu stellen. Eine invasive Therapie nur um des bevorstehenden Eingriffs willen ist nicht indiziert. Entsprechend muss die Frage nach der therapeutischen Konsequenz allfälliger pathologischer Befunde schon bei der Abklärungsplanung berücksichtigt werden. Bei **Risikopatienten** (siehe Abb. 1, unteres Drittel) erfolgt postoperativ (jeweils am Morgen des ersten, zweiten und gegebenenfalls dritten Tages) eine **Troponin**bestimmung. Interpretation und Vorgehen sind in Abbildung 2 zusammengefasst.

Instabile Koronarsyndrome/akute Koronarsyndrome

Instabile Angina pectoris, ausgeprägte Angina pectoris (CCS III oder IV), akuter Myokardinfarkt (< 7 Tage), kürzlich durchgemachte akute Koronarsyndrome/Myokardinfarkt (8–30 Tage) mit Hinweisen für relevante Restischämie

Dekompensierte Herzinsuffizienz

Bedeutende (neu aufgetretene oder symptomatische) Rhythmusstörungen, z.B.

Höhergradiger AV-Block, symptomatische ventrikuläre Arrhythmie, Rhythmusstörungen mit mangelnder Frequenzkontrolle, symptomatische Bradykardie

Schwere Herzklappenerkrankungen

Schwere Aortenstenose, symptomatische Mitralstenose

Tab. 1: Hinweise für eine akute/instabile Herzkrankheit:

CCS = Canadian Cardiovascular Society

Indikation	Art der PCI	Minimale Karenzzeit vor nicht-dringlichen Eingriffen
Chronische Koronare Herzkrankheit (KHK)	Drug Eluting Stent (DES)	6 Monate
Chronische Koronare Herzkrankheit (KHK)	Ballon inkl. medikamentenbeschichtet (DEB)	1 (-6) Monate
Akutes Koronarsyn- drom (ACS)	Jede Therapiemodalität	12 Monate

Dringlichere Eingriffe mit entsprechend früherem Absetzen der DAPT* nur nach Rücksprache mit dem interventionellen Kardiologen

Tab. 2: Vorgehen bei Patienten nach PCI

^{*} DAPT = Dual antiplatelet therapy (Duale Thrombozytenhemmung)

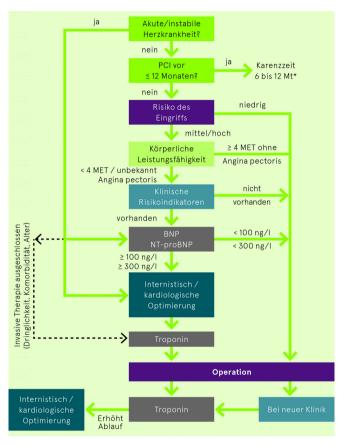


Abb. 1: Abklärungsgang bei kardialen Risikopatienten;

Nachdruck mit freundlicher Genehmigung aus: Filipovic M. Kindler CH. Walder B. Anästhesiologie und Reanimation: Perioperative kardiale Abklärung und Therapie im Vorfeld nicht-herzchirurgischer Eingriffe. Swiss Med Forum. 2018;18(5152):1078-80. https://doi.org/ 10.4414/smf.2018.03440

^{*} und weitere Erläuterungen siehe Tab. 1-5. ;MET = metabilic equivalent; BNP = brain natriuretic petide.

Offene gefässchirurgische Eingriffe an der Bauchaorta und der unteren Extremität, ausgedehnte Eingriffe in der Bauchhöhle (Eingriffe an Leber, Pancreas, Oesophagus, Cystektomie). ausgedehnte Eingriffe in der Brusthöhle (Pneumonektomie)

Kleinere und mittlere Fingriffe in der Bauch- oder Brusthöhle, grössere orthopädische Fingriffe, grössere Eingriffe am Hals oder Nacken, endovaskuläre Gefässeingriffe, Eingriffe an den Karotiden (symptomatische Patienten)

Eingriffe an der Körperoberfläche, am Auge, an der Mamma, an der Schilddrüse, transurethrale Eingriffe an der Prostata, kleine orthopädische und gynäkologische Eingriffe, Eingriffe an den Karotiden (asymptomatische Patienten)

Tab. 3: Risiko des bevorstehenden operativen Eingriffs

Die %-Zahlen geben die durchschnittliche Häufigkeit des perioperativen Auftretens bedeutender kardiovaskulärer Ereignisse an.

Verrichtung	Anzahl MET	Leistungsfähigkeit
Körperpflege, leichte Hausarbeiten, langsam geradeaus gehen, 1 Stockwerk steigen	1 bis 4	schlecht
Bergaufgehen, kurze Distanzen laufen	4 bis 7	mässig
Schwere Hausarbeiten, Ausdauersport	> 10	gut

Tab. 4: Einschätzung der Leistungsfähigkeit anhand des «metabolic equivalent» (MET), dass der Patient leisten kann

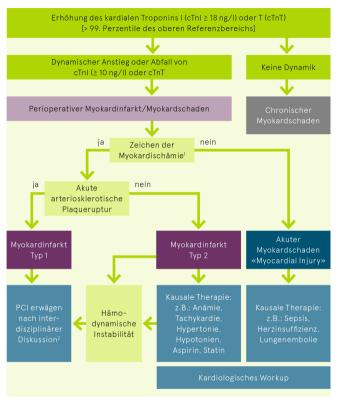
Rekannte koronare Herzkrankheit

St. n. Myokardinfarkt (vor > 30 Tagen), positiver Ischämienachweis, O-Welle im 12-Ableitungs-EKG, typische Angina pectoris (CCS I oder II), Nitrattherapie

Herzinsuffizienz

In der Vorgeschichte dokumentiert, unter medikamentöser Therapie «kompensiert»

Zerebrovaskuläre Erkrankungen


St. n. zerebrovaskulärem Insult (CVI), St. n. transienter ischämischer Attacke (TIA)

Diabetes mellitus, medikamentös behandelt

Niereninsuffizienz (Kreatinin > 180 µmol/l oder Clearance < 60 ml/min)

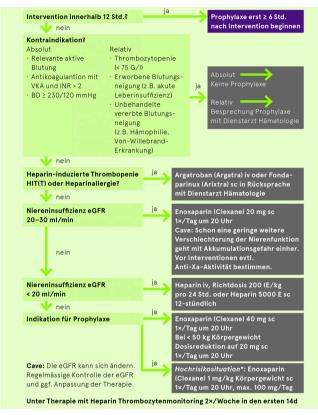
Tab. 5: Klinische Risikoindikatoren («revised cardiac risk index»);

CCS = Canadian Cardiovascular Society

1 Zeichen der Myokardischämie: Angina pectoris, neu aufgetretende ischämietypische EKG-Veränderungen, echokardiographisch neue regionale Wandbewegungsstörungen, etc. 2 Beachte das Blutungsrisiko im Rahmen des Einsatzes gerinnungshemmender Medikamente Abb. 2: Algorithmus zur Diagnose und Therapie des perioperativen Myokardinfarktes/ Myokardschadens, basierend auf der 4. Definition des Myokardinfarktes (Thygesen K. Alpert JS, Jaffe AS et al. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018 Oct 30;72(18):2231-2264. doi: 10.1016/j.jacc.2018.08.1038), modifiziert nach Yurttas et al. (Yurttas T, Hidvegi R, Filipovic M. Biomarker-Based Preoperative Risk Stratification for Patients Undergoing Non-Cardiac Surgery, J Clin Med. 2020 Jan 27;9(2):351. doi: 10.3390/jcm9020351).

Perioperative medikamentöse Therapie

Die internistisch-kardiologischen Indikationen für den Einsatz von **Statinen** und **Beta-Rezeptoren-Blockern** sollen voll ausgeschöpft werden. Die Behandlung sollte mindestens 4 Wochen vor dem Eingriff beginnen. Die Dosierung des Beta-Rezeptoren-Blockers soll schrittweise unter klinischer Kontrolle erhöht werden; Zielherzfrequenz < 65/Min.


Je nach Indikation bzw. Risiko für das Auftreten von kardiovaskulären Komplikationen und in Abhängigkeit von der Art des Eingriffs sollen Thrombozytenaggregationshemmer über den Eingriff hinaus weitergegeben oder einige Tage vorher abgesetzt werden. Vergleiche hierzu auch Kapitel «Periinterventionelles Management unter gerinnungshemmender Medikation» Seite 85.

Prof. Dr. Miodrag Filipovic Prof. Dr. Hans Rickli

Thromboembolieprophylaxe in der Medizin

In der Regel ist bei hospitalisierten Patienten eine Prophylaxe indiziert!

Risikofaktoren: Hospitalisation + ≥ 1 Risikofaktor: > 60 Jahre, BMI > 30 kg/m², Malignom, Intensivpatient, Dehydratation, Hormontherapie. Phlebitis, kardiale, metabolische, endokrine, respiratorische, infektiöse oder entzündliche Erkrankung. Signifikant reduzierte Mobilität = Patienten, die bettlägerig sind, die nicht allein gehen können oder einen substanziellen Teil des Tages nur im Bett oder auf einem Stuhl verbringen.1

VKA: Vitamin K-Antagonisten; * Hochrisikosituation: Anamnese von Thromboembolie bei Patient oder Verwandtem 1. Grades oder bei Thrombophilie

Prof. Dr. Miodrag Filipovic
Dr. Pamela Honold-Schneider, Prof. Dr. Wolfgang Korte,
Dr. Katrin Ledergerber, Prof. Dr. Hans Rickli

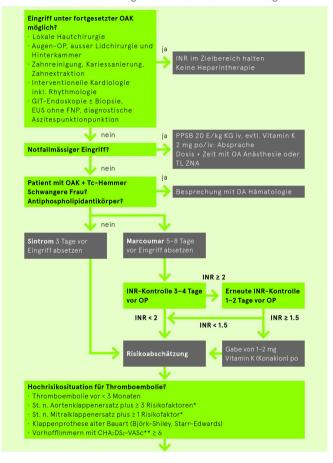
Periinterventionelles Management unter gerinnungshemmender Medikation; Vorgehen bei lebensbedrohlicher Blutung unter NOAK

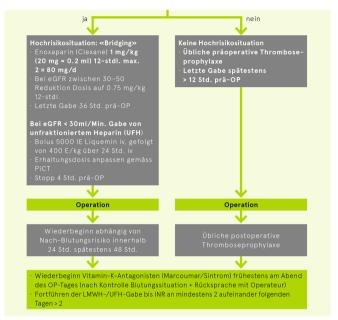
Die periinterventionelle Therapie mit gerinnungshemmenden Substanzen kann die Patienten einerseits vor schwerwiegenden Komplikationen schützen (Thromboembolie, Stentthrombose, zerebrale oder myokardiale Ischämie), andererseits aber auch Ursache bedeutender Blutungskomplikationen sein. Der Umgang mit Thrombozytenaggregationshemmern ist in der nachfolgenden Tabelle geregelt: Beibehalten, Absetzen und Wiederbeginnen werden abhängig von der Gefährlichkeit allfälliger Blutungskomplikationen des Eingriffs (von «gering» wie bei gewissen Punktionen bis «sehr hoch» wie bei intrazerebralen Eingriffen) sowie dem zerebro- und kardiovaskulären Risiko (von «tief bis mittel» wie bei Patienten ohne klar dokumentierte arteriosklerotische Gefässerkrankung bis «sehr hoch» wie bei Patienten kurz nach akuten Ereignissen oder Stentimplantationen) gehandhabt. Den Umgang mit oralen Antikoagulantien zeigen die Tabelle auf Seite 88 und Seite 90. Das Vorgehen hängt ab vom Eingriff und dessen Dringlichkeit sowie vom Ausmass des thromboembolischen Risikos. Hochrisikopatienten bedürfen einer hoch dosierten antithrombotischen «Überbrückungstherapie» (Bridging) mit niedermolekularen Heparinen wie Enoxaparin (Clexane) oder (ausnahmsweise) unfraktioniertem Heparin, bei Patienten ohne hohes Risiko genügt die übliche periinterventionelle Thromboseprophylaxe. Bei Patienten unter «direkten» bzw. «neuen» oralen Antikoagulantien («DOAK» bzw. «NOAK») erübrigt sich eine überbrückende Therapie: Das Zeitintervall zwischen letzter Einnahme und operativem Eingriff bzw. invasiver Intervention richtet sich nach der Nierenfunktion und Gefährlichkeit allfälliger Blutungskomplikationen (siehe Seite 90).

Periinterventionelles Management bei Patienten mit Thrombozytenaggregationshemmung

Punktion Pleura/Lunge, Knochenmark, Liquor, epidural, Gelenke, peridural, periphere Nerven, Schilddrüse, Aszites diagnostisch: Mediastinum Endoskopie Pleura/Lunge (exkl. Transbronchiale Biopsie), GIT ± Biopsie, GIT-Endosonografie ohne FNP; TUR-P (Laser), Bülaudrainage OP Augen (ausser Augenlid), Haut, Hand, Gefässshunts Herzschrittmacher, Koronarangiografie, ICD-Implantation Punktion Mamma, Perikard, PEG-Einlage Endoskopie Gynäkologie, Nephrologie, GIT-Polypektomie, Urologie, Transbronchiale Biopsie OP Gefässe, Gynäkologie, HNO, Lunge, Orthopädie, Urologie, Viszeralchirurgie **OP Herz** Biopsie Leber und Niere perkutan, Schilddrüse OP Augenlid, Leber, Wirbelsäule Sehr hoch **OP** Intrakraniell

Gefährlichkeit von Blutungskomplikationen


ACS = Akutes Koronarsyndrom; AKB = aortokoronare Bypass-Operation; AP = Angina pectoris; ASS = Acetylsalizylsäure; CVI = zerebro-vaskulärer Insult; CVK = zerebrale Verschlusskrankheit; KHK = koronare Herzkrankheit; OP = Operation; PAVK = periphere arterielle Verschlusskrankheit; PCI = perkutane Coronare Intervention;


Zerebro- und kardiovaskuläres Risiko

Tief bis mittel	Hoch	Sehr hoch
«Primäre Prävention» Keine manifeste KHK, CVK oder PAVK	ACS > 12 Monate Stabile KHK: St.n. PCI mit Stent > 6 Mte, St.n.AKB > 6 Wo; St.n.CVI/TIA > 1 Mt, PAVK	ACS ≤ 12 Monate Stabile KHK: St.n. PCI mit Stent ≤ 6 Mte, St.n.AKB ≤ 6 Wo; St. n. CVI/TIA ≤ 1 Mt
Pause ASS 5 Tage vor bis 7 Tage nach OP (evtl. Indikation ASS überprüfen) Bei intrakranieller Biutung 6 Wochen Pause	ASS unverändert weitergeben Indikation Clopidogrel, Prasugrel und/oder Ticagrelor abklären und individuell besprechen	Eingriff verschieben, ansonsten zwingend interdisziplinäre Besprechung mit Operateur, Anästhesist und Kardiologe Bis Entscheid gefällt, ASS, Clopidogrel, Prasugrel und/oder Ticagrelor unverändert weitergeben
	Pause ASS 5 Tage vor bis 1./2. Tag nach OP Indikation Clopidogrel, Prasugrel und/oder Ticagrelor abklären und individuell besprechen Pause ASS 5 Tage vor bis 2./3. Tag nach OP Indikation Clopidogrel, Prasugrel und/oder Ticagrelor abklären und individuell besprechen	Eingriff verschieben, ansonsten zwingend interdisziplinäre Besprechung mit Operateur, Anästhesist und Kardiologe

TIA = Transitorische ischämische Attacke; WS = Wirbelsäule; GIT = Gastrointestinaltrakt; FNP = Feinnadelbiopsie; TUR-P = transurethrale Prostataresektion; PEG = perkutane endoskopische Gastrostomie

Periinterventionelles Management unter Vitamin K-Antagonisten

* Risikofaktoren: mechanische Herzklappe, linksventrikuläre Auswurffraktion <50%, Vorhofflimmern. Hyperkoagulabilität/Thrombophilie. St. n. Thromboembolie

**CHA2DS2-VASc-Score: Punkte addieren für C= Herzinsuffizienz 1, H= Arterielle Hypertonie 1, A= Alter >75 Jahre 2, D= Diabetes mellitus 1, S= Schlaganfall/TIA 2, V= vaskuläre Erkrankung (z. B. PAVK, St. n. Myokardinfarkt oder schwere Verkalkung der Aorta) 1, A= Alter 65–74 Jahre 1, S= Frauen, wenn > 65. Jahre 1

DA = Dienstarzt; EUS = Endosonografie; FNP = Feinnadelpunktion; GIT = Gastrointestinaltrakt; INR = International Norm Ratio; LMWH = niedermolekularesHepari n; OAK = orale Antikoagulation; OP = Operation; TL = Teamleader; PPSB = Prothrombinkonzentrat (z.B. Beriplex); St. n. = Status nach; Tc-Hemmer = Thrombozytenaggregationshemmer; UFH = unfraktioniertes Heparin

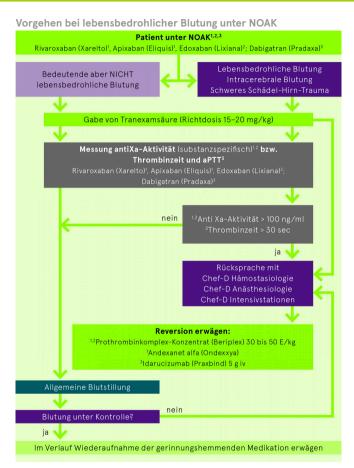
Periinterventionelles Management unter neuen oralen Antikoagulantien (NOAK)

Notfallmässiger Eingriff?	er Eingriff?			不	Absprache mit OA Anästhesie und/oder mit DA Hämatologie, Tel. 111
		nein		<u>.</u>	
Pause zwische	en letzter Ga	Pause zwischen letzter Gabe und Intervention		不	Wiederaufnahme nach Intervention
	eGFR in ml/Min.	Blutungsrisiko niedrig*	Blutungsrisiko mittel bis hoch*,**		
Apixaban (Eliquis)	≥ 30 < 30	3 Tage Absetzen'/ Minimale Wa 3 Tage	3 Tage Absetzen/ Minimale Wartezeit bis Intervention: 3 Tage 3 Tage	Interven	mit 2.5 mg nach 6 Std. AM KSSG NICHT EMPFOHLEN
Dabigatran (Pradaxa)	> 50 30-50 < 30	3 Tage 3 Tage Absetzen'/ Minimale Wa 3 Tage	3 Tage 3 Tage A Tage 4 Tage Absetzen/Minimale Wartezeit is Intervention: 3 Tage 2 Tage	ition / Ope	mit 110 mg nach 12 Std. mit 110 mg nach 12 Std. KONTRAINDIZIERT
Edoxaban (Lixiana)	> 30	3 Tage Absetzen¹/ Minimale Wa 3 Tage	3 Tage 3 Tage Absetzen/ Minimale Wartezeit bis Intervention: 3 Tage	ration	mit 15 mg nach 6 Std. AM KSSG NICHT EMPFOHLEN
Rivaroxaban (Xarelto)	>30	3 Tage Absetzen'/ Minimale Wa 3 Tage	3 Tage 3 Tage Absetzen/ Minimale Wartezeit bis Intervention: 3 Tage		mit 10 mg nach 6 Std. AM KSSG NICHT EMPFOHLEN

- Substanzwechsel auf Marcoumar (bei sehr langem Intervall) bzw. Heparin erwägen. Bei längerem Zeitintervall zwischen letzter Einnahme und Intervention
 - Blutungsrisiko siehe Tabelle «Periinterventionlles Management bei Patienten mit Bestimmungen der anti Xa-Spiegel bei tiefem Blutungsrisiko nicht notwendig. Thrombozytenaggregationshemmung». Bei Einhalten der Karenzzeiten sind Zur Einteilung der Interventionen in niedriges, mittleres respektive hohes Gilt auch für interventionelle Kardiologie inkl. Device-Implantationen.
- ** Bei mittlerem bis hohem Blutungsrisiko oder einer rückenmarksnahen Anästhesie ist eine Bestimmung der antiXa-Aktivität (Apixaban, Edoxaban, Rivaroxaban) bzw. der Thrombinzeit (Dabigatran) angezeigt. Bei einem antiXa-Spiegel von < 30ng/ml bzw. normaler Thrombinzeit ist nicht mit einer relevanten blutungsfördernden Vor Pulmonalvenenisolation bitte Rücksprache mit zuständigem Kardiologen! Medikamentenwirkung zu rechnen.

Übersicht neue orale Antikoagulantien (NOAK) (Details in den entsprechenden Kapiteln)

Substanz Riv	Rivaroxaban (Xarelto)	Apixaban (Eliquis)	Edoxaban (Lixiana)	Dabigatran (Pradaxa)
Wirkung				
hanismus	Direkte Inhibitoren von Faktor Xa	or Xa		Direkter, reversibler Thrombin-Inhibitor
Indikation und Dosierung ¹				
Zuerst immer: And Co	Anamnese für thromboembo Co-Medikation!	lische Ereignisse/Blutungen,	Anamnese für thromboembolische Ereignisse/Blutungen, Kontrolle Blutbild, Gerinnung, eGFR, Leberwerte und Co-Medikation!	, eGFR, Leberwerte und
nvVHFII ² 1× 3	1× 20 mg/d	2×5 mg/d	1× 60 mg/d	2× 150 mg/d
nvVHFIi² Dosis-Anpassung bei:		Falls ≥ 2 der folgenden 3 Kriterien: 2×2.5 mg/d		
· Niereninsuffizienz³ eG	eGFR 30-50 ml/min: 1× 15 mg/d	Krea≥133 µmol/l und eGFR≤30 ml/min	eGFR 30-50 ml/min: 1× 30 mg/d	eGFR 30-50 ml/min: 2× 110 mg/d
· Gewicht ⁴		Gewicht ≤ 60 kg	Gewicht ≤ 60 kg; 1× 30 mg/d	
		Alter≥80 y		Alter ≥ 80 y: 2×110 mg
In Kombination mit ASS Fal u/o. Clopidogrel ⁵ 1x1	Falls HAS-BLED≥ 3: 1×15 mg/d oder 1×10 mg/d	keine spezielle Anpassung	keine spezielle Anpassung	Falls HAS-BLED≥ 3: 2×110 mg
Therapie von akuter Tag ab Kei	Tag 1–21: 2× 15 mg/d ab Tag 22: 1× 20 mg/d Keine Dosisanpassung	Tag 1-7: 2×10 mg/d ab Tag 8: 2×5 mg/d Keine Dosisanpassung	Tag 1–5: UFH (nach TVT-Schema) oder NMH (1 mg/Kg KG 12-std. sc) ab Tag ó: 1x 60 mg/d; Dosisanpassung analog	Tag 1–5: UFH (nach TVT-Schema) oder NMH (f mg/Kg 12-std. sc) ab Tag 6: 2× 150 mg/d; Dosisanpassung analog nvVHFII
Prävention von Rezidiv TVT/LE (an Thrombo- embolie- resp. Blutungs- Thirisko adaptieren)	Nach 6 Mte: e nach Blutungs-/ Thromboembolie-Risiko: x 10 mg/d oder 1x 20 mg/d	Nach mind. 6 Mte: 2× 2.5 mg/d	1x 60 mg/d Dosisanpassung analog nvVHFIi	2x 150 mg/d Dosisanpassung analog nvVHFIi
Thromboseprophylaxe 1x 1	1× 10 mg/d Keine Dosisanpassung	2× 2.5 mg/d Keine Dosisanpassung		
Prophylaxe athero- thrombotischer Ereignisse 100 bei fortgeschr. KHK/PAVK Kei	2× 2.5 mg/d zusammen mit 100 mg ASS/d Keine Dosisanpassung			
Nicht empfohlen bei: Aki (keine vollständige Leb Aufzählung)	uelle schwere Blutung, sc perinsuffizienz', aktive sch ielle Endokarditis®, kürzlic	nwere Thrombozytopenie (< 5 were gastrointestinale Ulcus her CVI gemäss RS Neurologie	0'000 G/I), unklare, schwere A -Erkrankung, < 18y, Schwange . NOAKs sind bei künstlichen F	Anāmie, eGFR < 30 ml/mi rschaft/Stillzeit, akute b Herzklappen kontraindizi
onlen bei: ändige	uelle schwere Blutung, sc perinsuffizienz ⁷ , aktive sch ielle Endokarditis ⁸ , kürzlic	were g	Ihrombozytopenie (< 5 astrointestinale Ulcus gemäss RS Neurologie	Aktuelle schwere Blutung, schwere Thrombozytopenie (k 50'000 G/I), unklare, schwere Anāmie, eGFR x 30 ml/min, Leberinsuffizientz, aktive schwere gastronnestinale Ulcus-Erkrankung, rlöy, Schwangerschaft/Stilizeit, akute bakterielle Endokarditis', kürzlicher CVI gemäss RS Neurologie. NOAKs sind bei künstlichen Herzklappen kontraindiziert.


Substanz	Rivaroxaban (Xarelto)	Apixaban (Eliquis)	Edoxaban (Lixiana)	Dabigatran (Pradaxa)
Pharmakokinetik				
Orale Bioverfügbarkeit	15–20 mg; 66% (100% mit Nahrung); 10 mg; 80–100%	Ca. 52%	Ca. 62%	3-7%
max. Plasma- konzentration	Nach 2-4 Std.	Nach 3-4 Std.	Nach 1–2 Std.	Nach 0.5-2 Std.
Elimination	33% renal	27% renal	50% renal	80% renal
HWZ bei normaler Nierenfunktion	5–9 Std. (junge Pat.) 11–13 Std. (ältere Pat.)	12 Std.	10-14 Std.	12–14 Std.
Plasmaproteinbindung	92-95%	87%	55%	35%
P-gp-Substrat	Ja	Ja	Ja	Ja
Leber-Metabolismus CYP3A4 Beteiligung	Ja Ca. 18%	Ja Ca. 25%	Minimal < 4%	Nein
Arzneimittel-Interaktioner	Arzneimittel-Interaktionen adaptiert nach EHRA 2018 (keine vollständige Aufzählung) kursiv = keine sicheren Daten vorhanden	keine vollständige Aufzählung	 kursiv = keine sicheren Date 	en vorhanden
Kontraindiziert/ nicht empfohlen (Blutungsrisiko erhöht)?	Dronedaron, Azol-Antimy- kotika (ausser Fluconazol), HIV-Proteaseinhibitoren	Azol-Antimykotika (ausser Fluconazol), HIV-Proteaseinhibitoren	HIV-Proteaseinhibitoren	Dronedaron, Azol-Antimy- kotika (ausser Fluconazol), HIV-Protease-inhibitoren, Ciclosporin, Tacrolimus
Dosisanpassung oder anderes NOAK/OAK (Blutungsrisiko erhöht)?	Tacrolimus	Tacrolimus	Azol-Antimykotika (ausser Fluconazol), Dronedaron ¹⁰ , Clarithromycin, Erythro- mycin ¹⁰ , Ciclosporin ¹⁰ , Tocrolimus	
Kontraindiziert/	Rifampicin", Johanniskraut			
nicht empfohlen (Antikoagulation vermindert)	Dexamethason, Levetiraceta	Dexamethason, Levetiracetam, Valporat, Carbamazepin™, Phenobarbital™, Phenytoin™	Phenobarbital ¹² , Phenytoin ¹²	
Dosisanpassung oder anderes NOAK/OAK, falls weitere Risikofaktoren (Niere, Alter, Gewicht)	Amiodaron, Clarithro- mycin, Erythromycin, Fluconazol, <i>Ciclosporin</i>	Amiodaron, Diltiazem, Clarithromycin, Erythro- mycin, Ciclosporin, Dronedaron	Amiodaron, Verapamil ¹⁰	Amiodaron ¹³ , Verapamil ¹³ , Clarithromycin, Erythro- mycin
Besonderheiten				
Einnahmezeitpunkt/ Zermörserbarkeit	Einnahme mit Mahlzeit (15 mg und 20 mg Tabletten), zermörserbar	zermörserbar	zermörserbar	Nicht zermörserbar (Kapseln nicht öffnen)
Vergessene Einnahme	Nachholen der verpassten D von doppelten Dosen.	Nachholen der verpassten Dosis erlaubt bis zum Zeitpunkt der Hälfte des Dosierungsintervalls. Keine Einnahme von doppetten Dosen.	t der Hälfte des Dosierungsir	itervalls. Keine Einnahme

Substanz	Rivaroxaban (Xarelto)	Apixaban (Eliquis)	Edoxaban (Lixiana)	Dabigatran (Pradaxa)
Umstellungen				
Wechsel von/auf Heparin	Wechsel von/auf Heparin UFH → NOAK: Stopp UFH und Start NOAK 2(-4) Std. später NOAK av 4 VEH: Stopp NOAK und Start UFH bei nächster geg NOAK > NOAK: Stopp NOAK und Start NOAK bei nächster geg NOAK > NOAK: Stopp NOAK und Start NOAK bei nächster geg NOAK > NOAK: Stopp NOAK und Start NOAK bei nächster geg NOAK > NOAK: Stopp NOAK und Start NOAK bei nächster geg NOAK > NOAK: Stopp NOAK und Start NOAK bei nächster geg NOAK > NOAK: Stopp NOAK und Start NOAK bei nächster geg NOAK > NOAK: Stopp NOAK und Start NOAK bei nächster gegen NOAK > NOAK: Stopp NOAK und Start NOAK > NOAK: Stopp NOAK > NOAK:	UFH > NOAK: Stopp UFH und Start NOAK 2f-d) Std. später NOAK > UFH: Stopp NOAK und Start UFH bei nächster geplanter NOAK-Dosis NOAK > MAH: Stopp NAH und Start NOAK bei nächster geplanter NAH-Dosis NOAK > MAH: Stopp NOAK und Start NOAK bei nächster geplanter NOAK-Dosis GAX bei verzögerter Elimination bspw., bei Niereninsuffzienz Gave bei verzögerter Elimination bspw., bei Niereninsuffzienz	rr pplanter NOAK-Dosis geplanter NMH-Dosis geplanter NOAK-Dosis zienz	
NOAK auf NOAK	Stopp NOAK 1 und Start NOA	Stopp NOAK 1 und Start NOAK 2 bei nächster geplanter NOAK-Dosis	OAK-Dosis	
Wechsel von/auf VKA	VKA → NOAK: Stopp VKA un NOAK¹4 → VKA: Beginn VKA NOAK stoppen und INR am F CAVE: INR-Bestimmung jew	VKA → NOAK: Stopp VKA und Start NOAK sobald INR ≤ 2 NOAK" → VKA. Beginn VKA und initial Fortsetzen der NOAK (Dosishalbierung bei Edoxaban) bis INR > 2, dann NOAK → VKA. Beginn VKA und initial Fortsetzen der NOAK (Dosishalbierung bei Edoxaban) bis INR > 2, dann NOAK stoppen und INR am Folgetag vor Gabe NOAK nochmals kontrollieren CAVE: INF-Bestimmung jeweils unmittelbar vor nächster NOAK-Einnahme	AK (Dosishalbierung bei Edox mals kontrollieren •r NOAK-Einnahme	(aban) bis INR > 2, dann
Perioperativ/ periinterventionell	Siehe Gerinnungskarte / Gra	Siehe Gerinnungskarte / Grafik: «Periinterventionelles Management bei Patienten unter NOAK»	anagement bei Patienten unt	ter NOAK»
Aufhahing/Massing dar Wirksamkait	irksamkait			

er NOAK»	
Blutung unter	
bedrohlicher	
hen bei lebens	
Grafik: «Vorge	
Siehe G	
n bei Blutung	
Vorgehei	

Abkürzungen: CVI: cerebrovaskulärer Insult; d. Tag; DA: Dienstarzt; NOAK (neue orale Antikoaqulantien); eGFR: geschätzte glomeruläre Filtrationsrate; Hb: Hämoglobin; KHK: Koronare Herzkrankheit; Kreati nin; LE: Lungenembolie; Mte: Monate; NMH: niedermolekulares Heparin; PAVK: Peripher arterielle Verschlusskrankheit; RS: Rücksprache; Std.: Stunden; Tc: Thrombozyten; TVT: tiefe Venenthrombose; UE: untere Extremität; UFH: unfraktioniertes Heparin; VKA: Vitamin K-Antagonist;

- Nicht valvuläres Vorhofflimmern: NOAKs sind *nicht* zugelassen bei mechanischen Klappenprothesen oder mittelschwerer-/schwerer Mitralklappenstenose Bei Antiphospholipid-Syndrom mit hohem Risiko, Herz-Thromben, Sinusvenenthrombose RS mit DA Hämostaseologie empfohlen bzgl. Antikoagulation
 - Bei eGFR < 30 ml/min sind NOAKs am KSSG nicht empfohlen bzw. Mitralklappenstenosen rheumatischer Genese
- Bei Gewicht ≥ 120 kg, BMI ≥ 40 kg/m², Gewicht < 50 kg oder bei St. n. bariatrischer OP/Darm(teil)-Resektion; NOAKs nicht empfohlen
- Bei aktiver Tumorkrankheit: NMH oder NOAKs. NOAKs nur bei Patienten ohne erhöhtes gastrointestinales Blutungsrisiko und nur bei gutem Performance Status (ECOG < 3). Geeignet sind: Rivaroxaban, Apixaban oder Edoxaban (bei Edoxaban zuerst 5d UFH oder NMH) Dauer der Triple-Therapie genau evaluieren (in RS mit Kardiologie) 9
- Kontraindiziert bei Patienten mit Lebererkrankung/-insuffizienz mit Koagulopathie und klinisch relevantem Blutungsrisiko. Zusätzliche Kontraindikation bei eberzirrhose Child Pugh C bei Rivaroxaban, Apixaban und Lixiana. Dabigatran bei Child Pugh A, B und C kontraindiziert. Interdisziplinäre Rücksprache (Kardiologie, Infektiologie) empfohlen
 - NSAR, SSRI und SNRI in Kombination mit NOAKs ebenfalls mit Vorsicht einsetzen (erhöhtes Blutungsrisiko)
- Bei Edoxaban: AUC vermindert, aber ohne offensichtlichen Einfluss auf Cmax (keine Dosisanpassung erforderlich gemäss swissmedicinfo) Dosisreduktion auf 1x 30 mg/d (gemäss swissmedicinfo)
- Kombination mit Apixaban oder Edoxaban qqf. möglich, aber mit Vorsicht
 - Einnahme 2 Std. nach NOAK empfohlen (gemäss swissmedicinfo)
- Bei Umstellung von Dabigatran auf Marcoumar; RS mit DA Hämostaseologie empfohlen

Gemäss Gerinnungskommission KSSG/M. Filipovic

Prof. Dr. Miodrag Filipovic, Prof. Dr. Wolfgang Korte, Prof. Dr. Hans Rickli

^{94 |} Periinterventionelles Management unter gerinnungshemmender Medikation; Vorgehen bei lebensbedrohlicher Blutung unter NOAK

Akutes Koronarsvndrom (ACS)

Initiales Vorgehen

Verzögerungszeiten minimal halten «Zeit ist Myokard»!

Definition

Die Diagnose Myokardinfarkt basiert auf dem Anstieg kardialer Biomarker (vorzugsweise Troponin) mit einem Wert > 99-ste Perzentile des oberen Referenzwertes + mindestens einem der folgenden Kriterien: Ischämiesymptome, signifikante ST- oder T-Wellenveränderungen in mind. 2 Ableitungen, (vermutlich) neuer LSB oder RSB, Entwicklung einer pathologischen Q-Zacke, neue ventr. Wandbewegungsstörung.

Diagnostischer Algorithmus bei Verdacht auf ACS

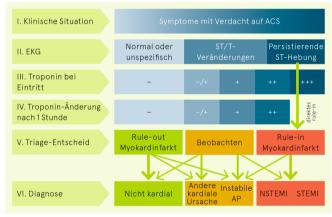


Abb. 1

Empfehlungen für die initiale Diagnostik

Arbeitsdiagnose basiert auf typischem Thoraxschmerz von > 20 Minuten Dauer (trotz Nitroglyzerin)

- 12-Ableitungs-EKG sobald als möglich (< 10 Min. nach erstem medizinischen Kontakt); evtl. zusätzliche Ableitungen bei V.a. posterioren Infarkt (V7-V9 > 0.5 mm), Wiederholung nach 10 Minuten
- Schmerzbeginn erfragen/erfassen; Blutdruck/Puls erfassen, Fokus auf kardiopulmonalem Status, Herzinsuffizienzzeichen? Frühere Blutungen? Frühere kardiovaskuläre Ereignisse?
- Kontinuierliche EKG-Überwachung so früh als möglich bei allen Patienten mit V a. ACS
- Blutentnahme für kardiale biochemische Marker (Troponin, CK-Bestimmung) routinemässig – aber Resultate nicht abwarten für Entscheid zur Reperfusionsbehandlung bei STEMI
- Echokardiografie kann helfen zur Diagnosesicherung, soll aber den Transfer zur Koronarangiografie nicht verzögern

Initiale Therapie

- 2-4 | Sauerstoff (nasal), falls Sättigung < 90%; bei Atemnot oder akuter Herzinsuffizienz Oberkörper 30° hochlagern
- Angina pectoris/Ischämiezeichen/Hypertonie: max. 3 Sprühstösse/ Kaukapseln Nitroglyzerin innert 15 Min., bei persistierenden/rezidivierenden Schmerzen 10–20 µg/min iv als Dauerinfusion per Spritzenpumpe, falls BD systolisch > 100 mmHg; Kontraindikation Phosphodiesterase-5-Hemmer
- Persistierender Schmerz: Morphin vorsichtig, maximal 0.1 mg/kg iv (fraktioniert)
- · Gerinnung:
 - · Falls nicht vorbestehend: ASS 250 mg iv oder po
 - STEMI: Duale Plättchenhemmung mit Ticagrelor (Brilique)
 180 mg (2 Tbl. 90mg) po Ladedosis, falls nicht verfügbar:
 Clopidogrel 600 mg (8 Tbl. 75mg bzw. 2 Tbl. 300mg) po
 - NSTEMI: Keine systematische duale antithrombotische Therapie vor der invasiven Abklärung. Bei ausgewählten Fällen (insb. bei konservativem Vorgehen) nach Rücksprache mit Dienstarzt Kardiologie duale Plättchenhemmung mit Ticagrelor (Brilique) 180 mg (2 Tbl. 90mg) po Ladedosis, falls nicht verfügbar: Clopidogrel 600 mg (8 Tbl. 75mg bzw. 2 Tbl. 300mg) po

- Unfraktioniertes Heparin (UFH) 5000 IE iv als Bolus, danach gemäss ACS-Schema und Anpassung gemäss Interventionalist bzw. Dienstarzt (DA) Kardiologie
- Bei Tachvarrhythmie Betablocker (Metoprolol 5 mg iv max. 3× innert 15 Min.), falls hämodynamisch stabil und keine Kontraindikation (u.a. Schock, BD sys < 100 mmHg, Kokain, HF < 45/Min., PQ-Intervall > 0.24 Sek., schweres Asthma, kardiale Dekompensation)

Monitoring

EKG. Puls. Blutdruck. SpO2. Schmerzscore. Alle Verzögerungszeiten dokumentieren

STEMI (ACS mit persistierender ST-Hebung)

Bevorzugte Therapie: Perkutane Coronar Intervention (PCI)

- Sofortige Kontaktierung des DA Kardiologie über Tel. 071 494 11 11
- Für Transfer: Bolus von 5000 IE unfraktioniertes Heparin iv (siehe «Initiale Therapie» Seite 96), falls noch nicht gegeben
- · GP-IIb/IIIa-Antagonist (in der Regel Tirofiban) oder intravenöser P2Y₁₂-Inhibitor (Kengrexal) nur nach Rücksprache mit DA Kardiologie: Beginn im HK-Labor bei hoher Thrombus-Last (Dosierungen siehe Tab. Seite 104)

Maximale zeitliche Verzögerungen	Ziel
Erster medizinischer Kontakt bis EKG und Diagnose	≤ 10 Min.
Erster medizinischer Kontakt bis primäre PCI (door to balloon) im KSSG	≤ 60 Min.
Erster medizinischer Kontakt in auswärtigem Spital/Rettungsdienst bis primäre PCI im KSSG	≤ 90 Min. (akzeptabel bis 120 Min.)

Systemische Thrombolyse nur, wenn

- Patient < 75 Jahre, Schmerzbeginn < 3 Std., kein kardiogener Schock, tiefes Blutungsrisiko, PCI nicht innerhalb 120 Min. möglich
- Therapie mit Alteplase (Actilyse) initial 15mg iv Bolus, dann 0.75mg/ kg iv über 30 Min. (maximal 50mg), anschliessend 0.5mg/kg iv über 60 Min. (maximal 35mg); zusätzlich Heparinbolus, dann Dauerinfusion Heparin iv für 24-48 Std., Beginn mit 12 IE/kg, maximal 1000 IE/Std., gemäss PiCT nach ACS-Schema.

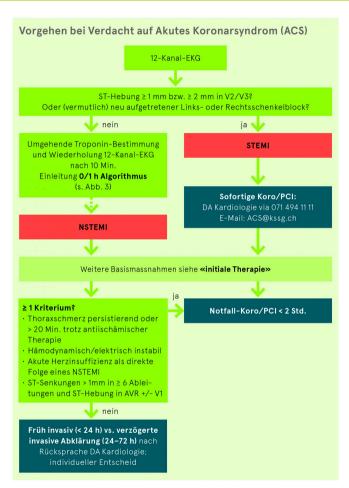
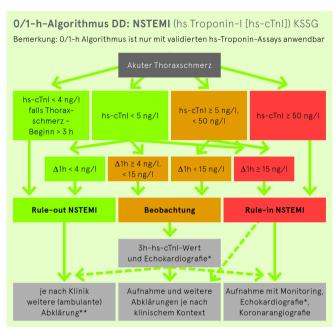



Abb. 2: AP = Angina pectoris; Koro = Koronarangiografie; PCI = perkutane Koronarintervention Nach: 2020 ESC Guidelines NSTEMI, 2017 ESC Guidelines STEMI und 2018 ESC Guidelines Myocardial Revascularisation

Zugelassene Troponin Assays	sehr tief	tief	kein 1h∆	hoch	1h∆
hs-cTnI (Access; Beckman Coulter) KSSG	< 4	< 5	< 4	≥ 50	≥ 15
hs-cTnT (Elecsys; Roche) Spital Grabs	< 5	< 12	< 3	≥ 52	≥ 5
hs-cTnl (Architect; Abbott) Spital Linth	< 4	< 5	< 2	≥ 64	≥ 6
hs-cTnl (Triage-True; Quidel) Spital Wil	< 4	< 5	< 3	≥ 60	≥ 8

Abb. 3 * Echokardiografie im Kontext NSTEMI: 1) Zur Klärung der Differentialdiagnose, dh Frage nach globaler/regionaler LV-Funktion, Klappenvitium, Perikarderguss, RV-Funktion. 2) Timing: a) Dringlich bei instabilen oder Pat, mit anhaltenden Thoraxschmerzen trotz medikamentöser Therapie. b) Bei NSTEMI vor Durchführung der Koronarangiografie. ** In ausgewählten Fällen Thorax CT (Triple Rule out)

250

240

230

220

210

200

06

180

160 170

150

140

130

120

100 110

90

80

2

v1 09

222

44

36

29

23

<u>∞</u>

13

8.6

5.4

3.9

2.9

2.1

9.1

0.6 0.8

0.4

0.3

^<u>^</u>

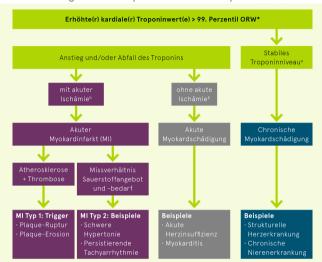
GRACE-Risiko-Nomogramm für akute Koronarereignisse	noN-ox	ogramm fü	r akute Ko	ronarereigni	sse				
1. Killip-Klasse*	*	2. Systolischer Blutdruck	cher	3. Herzfrequenz	luenz	4. Alter		5. Kreatir	5. Kreatinin-Spiegel
. <u>.</u>		mmHg	Punkte	Schläge/Min. Punkte	ı. Punkte	Jahre	Punkte	I/lomn	Punkte
Eintritt Pu	Punkte	≥ 80	58	≥ 50	0	≥ 30	0	0-34	-
_	0	80-99	53	69-09	8	30-39	80	35-69	4
=	20	100-119	43	70-89	6	40-49	25	70-105	7
≡	39	120-139	34	90-109	15	50-59	41	106-140	10
≥	59	140-159	24	110-149	24	69-09	58	141-176	13
		160-199	10	150-199	38	70-79	75	177-353	21
		≥ 200	0	≥ 200	46	80-89	91	≥ 354	28
						> 90	100		
6. Herzstillstand bei Eintritt 7. ST-Segment-Veränderung 8. Erhöhte kardiale Marker	nd bei Ei -Veränd€ diale Ma	ntritt erung rker	Punkte 39 28 14						
Total Punkte für prädiktive Faktoren = 1. + 2. + 3. + 4. + 5. + 6. + 7. + 8.	ür prädil	ktive Faktor	en = 1. + 2.	+ 3. + 4. + 5. +	- 6. + 7. + 8.				

** Gesamtsterblichkeit im Spital = Sterblichkeit an irgendeiner Ursache während Hospitalisation

NSTFMI

Das NSTEMI-ACS-Kollektiv ist sehr heterogen mit einer sehr variablen Prognose: Mortalität und Morbidität bei Hochrisiko-Konstellationen sind vergleichbar mit derienigen beim STEMI. Eine frühe Risikostratifizierung ist entscheidend für die Wahl der medikamentösen und invasiven Strategie. Hauptziele der Koronarangiografie und Revaskularisation bestehen in der Behandlung von Symptomen und der Verbesserung der Kurz- und Langzeitprognose.

Empfehlungen für Diagnose und Risikostratifizierung


- Abklärung siehe «O/1h-Algorithmus DD: NSTEMI» Seite 98
- Echokardiografie mit Frage nach regionaler oder globaler linksventrikulärer Dysfunktion und zur allfälligen Differenzialdiagnose
- Koronar-CT in Betracht ziehen, bei unklaren Thoraxschmerzen. inkonklusivem Troponin und tiefer Wahrscheinlichkeit einer KHK

Empfehlungen für die invasive Abklärung/Revaskularisation

- Notfallangiografie (< 2 Std.) erwägen, falls
 - Thoraxschmerzen persistierend oder > 20 Minuten trotz antiischämischer Therapie
 - · Hämodynamisch/elektrisch instabil
 - Akute Herzinsuffizienz als direkte Folge eines NSTEMI
 - · ST-Senkungen > 1mm in ≥ 6 Ableitungen und ST-Hebungen in aVR +/- V1
 - → für Transfer: UFH iv (siehe «Initiale Therapie» Seite 96)
- Frühe invasive (< 24 Std.) versus verzögerte (24 72 Std.) invasive Abklärung in Rücksprache mit DA Kardiologie
 - individueller Therapieentscheid
 - → Weiterführung UFH resp. Wechsel auf LMWH

Instabile Angina pectoris (keine ST-Hebung, Troponin nicht-erhöht, passende Symptomatik)

- Weitere Diagnostik
 - Ergometrie nach 12-24 Std.; ggf. Koronar-CT-Angiografie
 - Koronarangiografie elektiv anmelden bei: Ischämienachweis, hohem kardiovaskulären Risiko, linksventrikulärer Dysfunktion

Differenzierung zwischen Myokardinfarkt und Myokardschaden

Abb. 5: Nach ESC Leitlinien Vierte Universelle Definition des Myokardinfarkt 2018
a) Stabil bedeutet ≤ 20% Schwankungen der Troponinwerte im entsprechenden klinischen
Kontext. b) Ischämie bedeutet Zeichen und/oder Symptome einer klinischen Myokardischämie.
* ORW = oberer Referenzwert

Übersicht Empfehlungen zur prä-, peri- und postinterventionellen antithrombotischen Therapie

Orale Thrombozytenhemmung

Aspirin

- 250-500 mg po mindestens 2 Std. vor perkutaner Koronarintervention (PCI) oder
- · 250 mg iv direkt im Herzkatheterlabor
- Keine zusätzliche Aspirin-Gabe bei vorbestehender Aspirin-Therapie von mindestens 100 mg/Tag

P2Y₁₂-Inhibitor für duale Thrombozytenaggregationshemmung in Ergänzung zu Aspirin (Auswahl und Dauer der Therapie)

- Erste Wahl bei ACS im akuten Setting: Ticagrelor (Brilique) 2x 90 mg (d.h. 180 mg) po, als Ladedosis gefolgt von 2× 90 mg pro Tag als Erhaltungsdosis
- · Alternative: Prasugrel (Efient) 6x 10 mg (d.h. 60 mg) po, dann 10 mg/ Tag (KI: St. n. CVI/TIA, Dosisreduktion: Alter > 75 Jahre u/o Gewicht < 60 kg
- Clopidogrel 600 mg Ladedosis gefolgt von 75 mg/Tag, falls Ticagrelor oder Prasugrel nicht verfügbar oder kontraindiziert (u.a. Notwendigkeit einer OAK)
- Behandlungsdauer nach ACS: P2Y₁₂-Inhibitor-Therapie (duale Thrombozytenaggregationshemmung) 12 Monate.
 - Anschliessend Entscheid über Weiterführung mit Ticagrelor 2× 60 mg/Tag po bei hohem Ischämierisiko unter Abwägung von Ischämie- und Blutungsrisiko (PRECISE-DAPT Score).
 - Bei sehr hohem Blutungsrisiko kann eine Reduktion der dualen Thrombozytenaggregationshemmertherapie durch den Interventionalisten festgelegt werden.
 - Eine Verlängerung/Verkürzung ist immer ein indiviueller Therapieentscheid unter Abwägung des Ischämie- und Blutungsrisikos und muss im Verlauf regelmässig überprüft werden.
- Behandlungsdauer bei stabiler KHK (elektive Eingriffe):
 - 1(-6) Monat(e) nach Ballondilatation (inkl. drug eluting balloon, DEB)
 - 6 Monate nach medikamentenbeschichtetem Stent (drug eluting stent, DES)

Parenterale Thrombozytenhemmung

Tirofiban (Aggrastat)

Ladedosis Initial	$0.4~\mu g/kg KG$ über 30 Min. oder 25 $\mu g/kg$ iv über 3 Min.
Erhaltungsdosis	0.15 µg/kg/min iv für 18 Std. post PCI

Dosishalbierung bei Kreatinin-Clearance < 30 ml/min

Kengrexal (Cangrelor)

Ladedosis Initial	30 μg/kgKG Bolus iv über 1 Min.	
Erhaltungsdosis	4 μg/kg/min iv während der PCI (für mind. 2 bis 4 Std.)	

Reservemedikament. Anwendung nur bei Patienten, die zuvor noch keinen oralen P2Y₁₂-Inhibitor erhalten haben. Unmittelbar vor Stopp der Kengrexal-Infusion Beginn des peroralen P2Y₁₂-Inhibitors (Ticagrelor, Prasugrel, Clopidogrel) mit voller Ladedosis

Parenterale antithrombotische Therapie

Unfraktioniertes Heparin (UFH)

Die nachfolgenden Dosisempfehlungen gelten nur, wenn keine Vorbehandlung mit UFH erfolgte.

Mit GP-IIb/IIIa	50-60 U/kg iv	mit ACT-Ziel 200-250 Sek.
Ohne GP-IIb/IIIa	70-100 U/kg iv	mit ACT-Ziel 250-350 Sek.

- Bei Vorbehandlung mit UFH erfolgt die Gabe einer reduzierten UFH-Dosis nach Resultat der «Activated Clotting Time» (ACT)
- · Keine Dosisreduktion bei Niereninsuffizienz
- Heparin-Infusion soll am Abend nach der PCI gestoppt und durch Thromboseprophylaxe mit Clexane ersetzt werden (falls keine therapeutische plasmatische Gerinnungshemmung aus anderen Gründen [Vorhofflimmern, mechanische Klappe, sehr grosser Vorderwandinfarkt mit Gefahr von apikalem LV-Thrombus])

Niedermolekulare Heparine (LMWH)

Die nachfolgenden Dosisempfehlungen gelten nur bei Verabreichung der unten aufgeführten therapeutischen sc-Dosis. Bei sc-Gabe von prophylaktischer Dosis zu irgendeinem Zeitpunkt (z.B. Enoxaparin [Clexane] 20–40 mg oder Dalteparin [Fragmin] 2500–5000 U) sollte UFH (siehe oben) verwendet werden

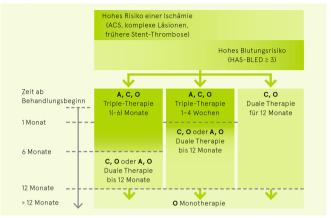
Enoxaparin (Clexane) 1 mg/kg 12-stündlich sc

Letzte sc -Dosis vor Katheter	iv-Dosierung LMWH im Katheterlabor
< 8 Std.	Keine zusätzliche Dosis iv
8-12 Std.	0.3 mg/kg iv (mit und ohne GP-IIb/IIIa)
> 12 Std.	UFH oder 0.5 mg/kg iv

Bei Kreatinin-Clearance < 30 ml/min: Gabe von UFH

Antithrombotikum bei Anamnese einer Heparin-induzierten Thrombozytopenie Typ 2 (HIT Typ 2)

Argatroban (Argatra)


Ladedosis Initial	350 μg/kgKG Bolus iv (3–5 Min.)
Erhaltungsdosis	25 μg/kg/min iv während der PCI , unter ACT-Kontrolle

Bei aktiver HIT oder nach Gabe von unfraktioniertem Heparin trotz Anamnese einer HIT soll sofort mit Argatroban begonnen werden, nach vorgängiger Gabe von LMWH frühestens 8 h nach letzter Dosis, Kontraindikation = Leberinsuffizienz

Antithrombotische Therapie bei perkutaner Intervention (PCI) und Indikation einer oralen Antikoagulation (OAK)

- Bei klarer Indikation für OAK (z.B. Vorhofflimmern mit CHA2DS2-VASc ≥ 2, mech. Klappenprothese, St.n. Thrombose/ Lungenembolie) Vitamin K-Antagonist (INR unterer Zielbereich) oder ein NOAK (in der zur Verhinderung der Thromboembolie wirksamen Dosierung, festgelegt durch den Interventionalisten) in Kombination mit Thrombozytenaggregationshemmer(n) verabreichen
- Dauer der Dualen Therapie bzw. der Triple Therapie gemäss Abbildung 6 «Management von ACS-Pat, mit PCI und Notwendigkeit einer OAK bei nicht-valvulärem Vorhofflimmern»
- (N)OAK vorderhand nicht kombinieren mit neuen Thrombozytenaggregationshemmern (Ticagrelor oder Prasugrel)
- Bei linksventrikulärem Thrombus OAK mindestens 3 Monate, bzw. gemäss echokardiografischem Verlauf, Behandlung mit einem Vitamin K-Antagonist: i.d.R. Phenprocoumon (Marcoumar), ggf. NOAK

Management von ACS-Pat. mit PCI und Notwendigkeit einer OAK bei nicht-valvulärem Vorhofflimmern

Abb. 6: Nach ESC Leitlinien NSTEMI 2020

CAVE: Triple Therapie so kurz wie möglich; NOAK in der zur Verhinderung eine Thromboembolie notwendigen Dosis; NOAK nicht mit neuen

Thrombozytenaggregationshemmern (Prasugrel, Ticagrelor) kombinieren; CHAD $_2$ S $_2$ -VASc und HAS-BLED-Score: siehe Kapitel Vorhofflimmern <u>Seite 253</u> und <u>Seite 255</u>; A = Aspirin Cardio; C = Clopidogrel, O = Orale Antikoagulation (in der Regel NOAK, falls GFR > 30ml/min)

Routinemassnahmen akute, subakute und chronische Phase nach STEMI/NSTEMI

- Alle Patienten in AMISplus-Register aufnehmen (weitere Informationen auf www.amis-plus.ch).
- Routinemässige Echokardiografie bei allen STEMI-Patienten in den ersten Tagen nach STEMI
- Protonenpumpeninhibitor: 40 mg Pantoprazol po immer während Triple Therapie, bei dualer Therapie bei Risikofaktoren für GI-Blutung (St. n. GI-Blutung, St. n. Ulcus, > 65 J., zusätzliche Einnahme von Steroiden)
- Orale Betablocker-Therapie w\u00e4hrend und nach Hospitalisation bei allen STEMI-Patienten, bei NSTEMI mit Herzinsuffizienz/LV-Dysfunktion siehe auch Kapitel «Chronisches Koronarsyndrom – Diagnostik und Thera-

- pie» siehe Seite 109/«Herzinsuffizienz» siehe Seite 225.
- Nüchtern-Blutglukose-Profil so früh als möglich während Hospitalisation
- Statin-Therapie: hohe Dosis (40-80 mg Atorvastatin oder 20 mg Rosuvastatin) so früh als möglich mit Reevaluation 4-6 Wochen nach Infarkt, Ziel-LDL < 1.4 mmol/l (ggf. Dosisanpassung bei Patienten mit erhöhtem Nebenwirkungs-Risiko wie ältere Patienten, Nieren- und/ oder Lebererkrankung, bekannte Statin-Nebenwirkungen) siehe Kapitel Hyperlipidämie Seite 35.
- CE-Hemmer bei STEMI innerhalb der ersten 24 Std. bei Hinweisen auf Herzinsuffizienz, erheblicher LV-Dysfunktion (insbesondere Vorderwandinfarkt), Diabetes; bei ACE-Hemmer-Intoleranz Angiotensin-Rezeptorblocker
- Aldosteron-Antagonist, d.h. Eplerenone oder Spironolactone, falls LV-EF < 40% und Herzinsuffizienz oder Diabetes, vorausgesetzt keine Niereninsuffizienz oder Hyperkaliämie
- Rauchstopp-Beratung siehe Seite 55
- Frühmobilisation: kardiale Rehabilitation planen (siehe Kapitel «Ambulante kardiale Rehabilitation» Seite 315)

Anmeldung

Ansprechpartner für Anmeldung von auswärts für KSSG

Notfall-Anmeldung telefonisch

Dienstarzt Kardiologie via Zentrale KSSG Telefon: +41 71 494 11 11 Unterlagen inkl. Stammblatt an E-Mail: ACS@kssg.ch

Elektive Anmeldung*

Schriftlich: E-Mail: kardiologie@kssg.ch oder per Post Ärztliche Leitung Kardiologie, Rorschacher Strasse 95, 9007 St. Gallen Rückfragen Telefon: +41 71 494 10 51; Montag - Freitag: 8-17 Uhr * Mit Versicherungsstatus

Quellen/Links

- Collet JP, Thiele H, Barbato E et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation (NSTEMI): Eur Heart J. 2020; ehaa575, https://doi.org/10.1093/eurheartj/ehaa575
- Neumann FJ, Sousa-Uva M, Ahlsson A, 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87-165. https://doi.org/10.1093/eurheartj/ehy394
- Thygesen K, Alpert JS, Jaffe AS, et al. 2018 Fourth universal definition of myocardial infarction, Eur Heart J. 2019;40(3):237–269, https://doi.org/10.1093/eurheartj/ehy462
- Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation (STEMI). Eur Heart J.;39(2):119–177, https://doi.org/10.1093/eurheartj/ehx393

Prof. Dr. Hans Rickli

Dr. Gian-Reto Kleger

Dr. Daniel Lüscher

Prof. Dr. Micha Maeder

Dr. Dominique Nüssli

Dr. Johannes Rigger

Dr. Claudio Rüegg

Dr. Daniel Weilenmann

Chronisches Koronarsyndrom - Diagnostik und **Therapie**

Einleitung/Definition

Die Koronare Herzkrankheit (KHK) ist definiert als Manifestation einer Arteriosklerose an den Herzkranzarterien. Abhängig vom Missverhältnis zwischen myokardialem Sauerstoffbedarf und -Angebot resultiert daraus eine kardiale Ischämie. Es gibt zwei Manifestationsformen der KHK. Alle Situationen ausserhalb des akuten Koronarsyndroms (ACS) werden als **«Chronisches Koronarsvndrom CCS»** bezeichent (ESC Leitlinien 2019). Der Begriff soll auf die potentiell dynamische Komponente der koronaren Herzkrankheit auch im chronischen Stadium hinweisen.

Symptome und klinische Befunde

Die pectoris ist nach ESC-Richtlinien definiert als die Summe der 3 Charakteristika:

- Retrosternaler Thoraxschmerz (druckartig, Enge) und Dauer (≤ 10 min), evtl. mit Ausstrahlung linker Arm/Schulter, Hals/Kiefer
- Hervorgerufen durch körperliche Anstrengung oder emotionale Belastung, verstärkt bei Kälte
- Besserung durch Ruhe und/oder Nitrate innerhalb von Minuten.

Gemäss den ESC-Leitlinien Chronisches Koronarsyndrom (CCS) 2019 wird die (Belastungs-)Dyspnoe als Angina-Äquivalent berücksichtigt. Nur ca. 10-15% präsentieren sich mit einer typischen, alle 3 der genannten Punkte umfassenden AP. V. a. bei älteren Patienten, häufiger auch bei Frauen und Diabetikern ist die Symptomatik oft atypisch (2 Punkte)

Diagnostik

Abklärungsstrategie

Bei symptomatischen Patienten mit vermuteter Koronarer Herzerkrankung erfolgt die Abklärung anhand der Vortestwahrscheinlichkeit und der klinischen Wahrscheinlichkeit

Die Einschätzung der Vortestwahrscheinlichkeit für eine stenosierende KHK erfolgt anhand einfacher klinischer Charakteristika wie Art des Brustschmerzes Alter und Geschlecht des Patienten und nimmt eine zentrale Rolle für das weitere diagnostische Vorgehen ein (siehe folgende Tabelle 1). Als modifizierende Faktoren der Vortestwahrscheinlichkeit werden dabei zusätzlich berücksichtigt: kardiovaskuläre Risikofaktoren (kv RF), EKG-Veränderungen, vaskuläre Erkrankung (PAVK, CVI/TIA), LV-Dysfunktion und Niereninsuffizienz (siehe Tabelle 2). Bei symptomatischen Patienten mit einer Vortestwahrscheinlichkeit von 5-15% besteht eine hohe klinische Wahrscheinlichkeit und eine weiter Abklärung ist empfohlen.

Vortestwahrscheinlichkeiten (VTW) für das Vorliegen einer obstruktiven Koronaren Herzerkrankung

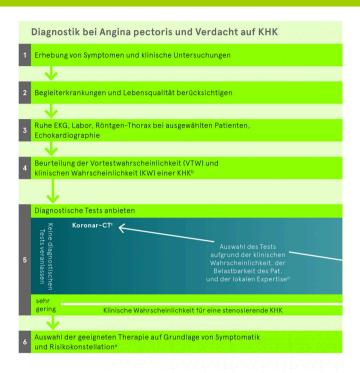
	Турі	isch	Atyp	isch	Nicht	angiös	Dys	onoe
Alter	М	W	М	W	М	W	М	W
30-39	3%	5%	4%	3%	1%	1%	0%	3%
40-49	22%	10%	10%	6%	3%	2%	12%	3%
50-59	32%	13%	17%	6%	11%	3%	20%	9%
60-69	44%	16%	26%	11%	22%	6%	27%	14%
70+	52%	27%	34%	19%	24%	10%	32%	12%

Tab. 1: Nach ESC Leitlinien CCS 2019

Nicht-invasive Risikostratifizierung bei Koronarer Herzerkrankung (KHK)

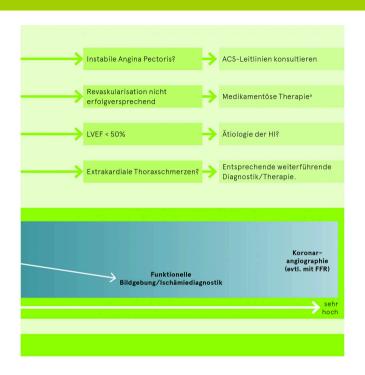
Hohes Risiko (> 3% jährliches Mortalitätsrisiko)

- Schwer eingeschränkte systolische linksventrikuläre Funktion (LVFF < 35%).
- 2. Hohes Risiko des Treadmill Score (Score < 11)
- 3. Stress-induzierter, grosser Perfusionsdefekt (v.a. anterior)
- 4. Grosser, fixierter Perfusionsdefekt mit einer linksventrikulären Dilatation oder erhöhter Lung Heart Ratio (LHR) in der Szintigrafie (als Zeichen der Lungenstauung)
- 5. Stress-induzierter, moderater Perfusionsdefekt mit einer linksventrikulären Dilatation oder erhöhter Lung Heart Ratio (LHR) in der Szintigrafie
- 6. Echokardiografisch dokumentierte Wandbewegungsstörung (> 2 Segmente) in der Low-Dose-Dobutamin-Stress-Echokardiografie (< 10 mg/kg/min) oder bei einer tiefen Herzfrequenz (< 120/Min.)
- 7. Dokumentation eines grossen Ischämieareals in der ergometrischen und/oder Dobutamin-Stress-Echokardiografie


Intermediäres Risiko (1-3% jährliches Mortalitätsrisiko)

- Leicht bis mittelschwer eingeschränkte systolische linksventrikuläre Funktion (LVEF = 35%)
- 2. Intermediäres Risiko des Treadmill Score (- 10 bis 4)
- 3. Stress-induzierter, moderater Perfusionsdefekt ohne linksventrikuläre Dilatation oder erhöhte Lung Heart Ratio (LHR) in der Szintigrafie
- 4. Limitierter Nachweis einer Ischämie in der Stress-Echokardiografie mit induzierbaren Wandbewegungsstörungen nur bei hoher ergometrischer Belastung oder Dobutamindosis in zwei oder weniger Wandsegmenten

Niedriges Risiko (< 1% jährliches Mortalitätsrisiko)


- Niedriges Risiko des Treadmill Score (Score ≥ 5)
- Normale myokardiale Perfusion oder umschriebener myokardialer Perfusionsdefekt in Ruhe oder unter Belastung
- 3. Normale Stress-Echokardiografie oder nur minimale Wandbewegungsstörungen unter Belastung

Tab. 2: Treadmill Score = Ergometriezeit (Min.) - 5× ST-Streckensenkung (mm) - 4× AP-Index (keine AP = 0: nicht limitierende AP = 1: limitierende AP = 2) Nach: ACCE/AHA Leitlinien Stable ischemic heart diesease 2012

- a Bei Unsicherheiten hinsichtlich der Diagnose KHK kann es angebracht sein, vor Einleitung einer Behandlung eine Ischämietestung mittels nicht-invasiver funktioneller Bildgebung durchzuführen.
- b Ergometrie zur Beurteilung von Symptomen, Arrhythmien, Belastungstoleranz, Blutdruckantwort und Beurteilung des kardiovaskulärer Risiko
- c Funktionelle Bildgebung / Ischämieämiediagnostik, falls Koronar-CT Befund nicht diagnostisch.
- d Fähigkeit zur körperlichen Belastung, individuelle, testbezogene Risiken und Wahrscheinlichkeit für den Erhalt eines diagnostischen Testergebnisses.
- e Angina Pectoris ohne Obstruktion der epikardialen Koronararterien erwägen.

Abb 1: Nach ESC Leitlinien CCS 2019

KHK = Koronare Herzerkrankung; ACS = Akutes Koronarsyndrom; LVEF = Linksventrikuläre Funktion; HI = Herzinsuffizienz; FFR = Fraktionelle Flussreserve

Vergleich der nicht-invasiven Untersuchungen: Diagnostische Genauigkeit, Limitationen, Vor- und Nachteile

Verfahren	Sensi- tivität*	Spezi- fität*	Limitation	Vorteile	Nachteile
Ergometrie	45-50%	85-90%	– Belast- barkeit – PM	– Günstig und verfügbar	 Einge- schränkte diagn. Treff- sicherheit
Stress-Echo – physi- kalisch – pharma- kologisch	80-85% 79-83%	80-88% 82-86%	– Schall- qualität	– Verfügbar	
Stress-MRI	87-91%	80-83%	 Implantate Klaustro- phobie Arrythmie Koope- ration PM 	– Hohe diagn. Genauigkeit – Funktions- und Gewebe- Beurteilbarkeit	
Perfusions- PET	81-97%	74-91%		 Hohe Genauigkeit Fluss-quanti- fizierung inkl. Beurteilung der koronaren Mikrozirkulation Hybridbild- gebung** 	– Strahlen- belastung (1 mSv) – Verfügbar- keit
Koronar-CT	95-99%	64-83%	- Patienten- selektion: SR, HF < 100, Ca-Score < 400 - Stents - NI, KM- Allergie	– Zuverlässiger Ausschluss einer KHK – Hybridbild- gebung**	– Strahlen- belastung (gering, 0.5 mSv)

Tab. 3: Nach ESC Richtlinien CCS 2019 und Management der stabilen Koronaren Herzerkrankung 2013

PM = Schrittmacher; NI = Niereninsuffizienz; KM = Kontrastmitttel

Fahrrad-Ergometrie

Möglichkeiten

Möglicher Ischämienachweis, geringe Sensitivität (gute Ausbelastung: bei Doppelprodukt > 25'000 (HF_{max} × BDsyst_{max}) / HF >85 %

^{*}im Vergleich mit dem Referenzstandard invasive Diagnostik;

^{**}Hybridbildgebung: Dieses Verfahren ermöglicht die Kombination von anatomischer/ morphologischer und funktioneller Bildgebung, z.B. als PET/CT Herz.

- der berechneten HF_{max})
- Obiektivierung der körperlichen Leistungsfähigkeit (z.B. im Rahmen der präoperativen Abklärung)

Indikationen

- Bei Verdacht auf KHK: in den ESC Leitlinien CCS 2019 werden zur Primärdiagnostik nicht-invasive bildgebende Tests empfohlen
- Belastungs-EKG als möglicher initialer Ischämietest bei niedriger Vortest-Wahrscheinlichkeit (< 19%)
- Im Management von KHK-Patienten empfohlenzur Beurteilung von Leistungsfähigkeit, Symptomen, Arrhythmien, Blutdruckverhalten und Risikoabschätzung
- Bei bekannter KHK unter Therapie zur Beurteilung der Symptomund Ischämiekontrolle möglich

Limiten respektive fehlende Aussagekraft

- Vorbestehende ST-Streckensenkung (1mm) in Ruhe
- WPW, Linksschenkelblock (LSB), Schrittmacher-Rhythmus
- Digoxin-Therapie

Stress-Echokardiografie

Technik

Echokardiografisch wird die Kontraktilität des linken Ventrikels in Ruhe und unter Belastung dargestellt. Nimmt die Kontraktilität unter der (ergometrischen oder pharmakologischen) Belastung lokal ab. entspricht dies einem indirekten Ischämienachweis und erlaubt Rückschlüsse auf die Lokalisation und Ausmass der Ischämie.

Indikationen

- Ischämiediagnostik
- Präoperative Risikostratifizierung
- Spezifische Fragestellungen bei Klappenvitien (z.B. kontraktive Reserve)

Limiten

- Ungenügende Echoqualität
- · Relevante Herzrhythmusstörungen, unkontrollierte art. Hypertonie

Kardiale Magnetresonanztomografie mit Belastung (Stress-MRI)

Technik

Die kardiale Magnetresonanztomografie eignet sich besonders zur Darstellung von Struktur und Funktion des Herzens und erlaubt nach intravenöser Kontrastmittelapplikation sowohl die Beurteilung der Koronarperfusion (Ruhe/Belastung) als auch die Identifizierung und Quantifizierung von infarziertem Myokard.

Möglichkeiten

- · Links- und rechtsventrikuläre Funktionsdiagnostik (Gold-Standard)
- · Myokard-Diagnostik (Viabilität, Entzündung, Myopathie)
- · Stress-MRI: Ischämiediagnostik (Regadenoson, Dobutamin)
- · Darstellung von Klappenfunktion und -morphologie (Flussmessungen)
- · Gefässdarstellung (z.B. vor Pulmonalvenenisolation)
- · Perikarddiagnostik

Indikationen

- Identifikation des Ausmasses von infarziertem Myokard durch Anreicherung des Kontrastmittels Gadolinium in der Spätphase (Late Gadolinium Enhancement – LGE; Viabilitätsnachweis).
- · Ischämiediagnostik
- · Vitalitätsdiagnostik vor allfälliger Intervention/Bypass-Operation
- Komplexe kongenitale Vitien
- · Entzündliche oder metabolische Herzmuskelerkrankungen
- · Tumore

Limite

- · Herzschrittmacher- und ICD-Träger (abhängig vom Modell)
- Mechanische Herzklappen, die vor 1980 implantiert wurden
- · Herzrhythmusstörungen (Triggerprobleme)

Nuklearmedizinische Myokardperfusionsbildgebung: PET und SPECT

Technik

Die nuklearmedizinische Myokardperfusionsbildgebung erlaubt die Beurteilung der funktionellen Perfusion in Ruhe und unter Belastung und somit die Diagnose von Ischämien und Mykardnarben. Die Perfu-

sionsdefekte werden semiguantitativ ausgewertet (gescored) und der Summed Difference Score (SDS) berechnet was eine Risikostratifizierung erlaubt. Mit der Perfusions-PET (z.B. mit Rubidium-82) erfolgt zusätzlich eine Quantifizierung des myokardialen Blutflusses und der mvokardialen Flussreserve, was zusätzlich eine Aussage über die Mikrozirkulation erlaubt. Ergänzt wird die Untersuchung durch die Bestimmung der koronaren Kalklast (Agatston-Score), was eine weitere Risikostratifizierung erlaubt. Die Untersuchung wird als Hybridbildgebung mit einem CT durchgefüht, so dass anatomische/morphologische und funktionelle Bildgebung kombiniert werden. Die Szintigrafie (SPECT) mit vorausgehender ergometrischer Belastung ist am KSSG für ausgewählte Fragestellungen (z.B. Ischämie bei malignem Koronaranomalien) verfügbar (höhere Strahlenbelastung).

Indikationen

- · Ischämiediagnostik und -quantifizierung
- Risikostratifizierung (z.B. präoperativ)
- Calcium-Scoring zur Bestimmung der koronaren Kalklast
- Beurteilung der funktionellen Relevanz bei bekannten Koronarstenosen

Koronar-CT-Angiografie (Herz-CT)

Technik

Mit EKG-gesteuerter Zeitauflösung erreichen moderne Multislice-Computertomografen eine hohe örtliche Auflösung. Die Strahlenbelastung der Koronar-CT-Angiografie beträgt mit der modernen Technik ca. 0.5-5 mSv. Die Bestimmung der koronaren Kalklast erfolgt in einer nativen Niedrigdosis-CT von 0.2 mSv entsprechend dem Calcium-Score (Agatston-Score). Mit einmaliger Kontrastmittelgabe werden anschliessend der Koronarbaum und die intra-/extrakardiale Morphologie dargestellt sowie die linksventrikuläre Funktion berechnet. Die Untersuchungsdauer beträgt etwa 15 Min.

Möglichkeiten

- Ausschluss einer KHK bei tiefer/intermediärer Vortestwahrscheinlichkeit bis circa 15 % gemäss Tab. 1
- Beurteilung von Koronaranomalien

- Komplexe, angeborene Fehlbildungen
- Calcium-Scoring zur Bestimmung der koronaren Kalklast
- Der Calcium-Score quantifiziert die Menge an Verkalkung in den Koronararterien (Agatston-Score) und korreliert mit der Wahrscheinlichkeit des Vorliegens einer KHK.

Indikationen

- Bei einem selektionierten Patientengut (entsprechend Tab. 3)
- Präoperative Bildgebung der Koronarien vor valvulärer oder vitienkorrigierender Herzoperation
- Verdacht auf Koronaranomalie

Nicht indiziert

- Bei Hochrisikopatienten gemäss AGLA-Score und/oder hoher Vortestwahrscheinlichkeit gemäss Tab. 1
- Zur Verlaufsbeurteilung einer KHK
- Bei bestehenden komplexen Herzrhythmusstörungen

Die Koronarangiografie

Die Koronarangiografie ist in der Diagnostik der Koronaren Herzkrankheit (KHK) der Gold-Standard. Eine invasive Abklärung ist bei hochgradigem V a KHK und unbekanntem Koronarstatus in den meisten Fällen sinnvoll. (siehe auch Abb 1.: Diagnostik bei AP und V.a. KHK). Indikationen für eine Koronarangiografie bzw. PCI oder Bypass-Operation (falls Koronarstatus schon bekannt) können mit dem Dienstarzt Kardiologie und den interventionell tätigen Kaderärzten intern besprochen werden. Anmeldungen für elektive Untersuchungen von extern sind an die ärztliche Leitung der Klinik für Kardiologie zu richten.

Therapie

Es werden zwei Ziele verfolgt:

- Verbesserung der Prognose durch Prävention von Myokardinfarkt, Herzinsuffizienz und Tod
- · Reduktion der Symptome bzw. Verbesserung der Lebensqualität

Diese Ziele werden erreicht durch allgemeine nicht-medikamentöse Massnahmen, eine individualisierte medikamentöse Therapie sowie Revaskularisationseingriffe bei selektionierten Patienten. Voraussetzungen für eine angemessene Therapie sind eine adäquate Diagnostik und Risikostratifizierung mittels nicht-invasiver Methoden und meist Koronarangiografie.

Die Angriffspunkte der medikamentösen Therapie betreffen:

- Koronaratherosklerose: Verhinderung einer Progression bzw. eine Regression der Plaquelast und eine Plaque-Stabilisierung.
- «Umbauprozesse» des linken Ventrikels nach Infarkt (Remodeling):
 Verhinderung einer Progression einer linksventrikulären Dysfunktion und die Entwicklung einer Herzinsuffizienz.
- · Myokardiale Ischämie: Reduktion von ischämischen Symptomen

Substanzen, die auf Ebene der Koronaratherosklerose und des Remodelings wirken und somit die Biologie des Krankheitsprozesses direkt beeinflussen, haben in der Regel einen prognostischen Nutzen, während dies für die antischämisch wirksamen Medikamente nicht gilt (Ausnahme: Betablocker bei Postinfarkt-Patienten sowohl mit antiischämischer als auch Anti-Remodeling-Wirkung).

Die interventionelle (percutaneous coronary intervention; PCI) oder chirurgische (aortokoronarer Bypass) Revaskularisation stellt eine rein mechanische Therapie dar und benötigt ergänzend immer Lebensstilanpassungen (regelmässige körperliche Aktivität, Gewichtsreduktion, gesunde Ernährung, Nikotinabstinenz) und eine medikamentöse, sekundärpräventive Behandlung. Revaskularisationseingriffe sind sehr effektiv zur Linderung der Symptomatik, haben aber nur in bestimmten Konstellationen einen prognostischen Effekt.

Medikamentöse Therapien, welche die Koronaratherosklerose beeinflussen

Thrombozytenaggregationshemmer und orale Antikoagulation

- Aspirin 100 mg/Tag für alle Patienten mit KHK, bei Aspirin-Allergie Desensibilisierung in Erwägung ziehen
- Zusätzlich Clopidogrel (Plavix) 75 mg/Tag für 6 Monate nach PCI (Dauer in bestimmten Fällen weniger lang, muss in jedem Fall vom Interventionalisten genau festgelegt sein) und eventuell nach aortokoronarer Bypass-Operation. Bei stabiler KHK noch nicht genügend Daten zu Prasugrel und Ticagrelor; deshalb nur bei Kontraindikation für Clopidogrel einsetzen. Bei erhöhtem gastrointestinalem Blutungsrisiko Einsatz eines PPI, in erster Linie Pantoprazol (Pantozol) empfohlen.
- Bei hohem Ischämie- und vertretbarem Blutungsrisiko (PRECISE-DAPT-Score) kommt ein Jahr nach akutem Koronarsyndrom die Fortführung einer dualen Thrombozytenaggregationshemmung mit Aspirin niederig dosiert Ticagrelor (Brilique, 2×60 mg) in Frage.
- Orale Antikoagulation: Falls eine Indikation für eine orale Antikoagulation besteht (Vorhofflimmern, mechanische Klappenprothese, St. n. Lungenembolie u.a.), ist die orale Antikoagulation ohne Aspirin oft ausreichend; bei Risikopatienten mit stabiler KHK (insbesondere St. n. Stent) ist die Kombination von oraler Antikoagulation und Aspirin 100 mg/Tag zu erwägen. Die Datenlage ist diesbezüglich aber unklar; Vorgehen muss immer individuell (thrombotisches Risiko vs. Blutungsrisiko) diskutiert werden. Nach PCI wird die Dauer einer Triple Therapie (orale Antikoagulation kombiniert mit Aspirin und Clopidogrel) bzw. die Dauer der anschliessenden dualen Therapie (orale Antikoagulation kombiniert mit Clopidogrel) in Abhängigkeit vom thromboembolischen Risiko und vom Blutungsrisiko individuell festgelegt (Triple Therapie in der Regel ein Monat, maximal 6 Monate, dies aber nur in Ausnahmefällen) siehe Kapitel ACS Seite 95.
- Nicht-Vitamin K-Antagonisten-orale Antikoagulantien (NOAKs): Triple
 Therapie mit Aspirin und Clopidogrel nach PCI möglich (Dauer analog
 wie bei Vitamin K-Antagonisten, NOAK in der zur Verhinderung der
 Thromboembolie wirksamen Dosierung, festgelegt durch den Interventionalisten).

Für Hochrisikopatienten kommt ausserhalb des Setting des akuten Koronarsyndroms eine Kombination aus Aspirin mit niedrig dosiertem Rivaroxaban (Xarelto, 2×2.5 mg) in Frage.

Lipid-modifizierende Therapie und SGLT2-Hemmer

- Grundsätzlich immer bei KHK auch bei Cholesterinwerten im Ziel-Bereich (→ tiefe Dosis eines gut verträglichen Präparats)
- Primär Statine mit Ziel-LDL-Cholesterin < 1.4 mmol/l bzw Halbierung des Ausgangswertes
- Zusätzlich Ezetimibe (Ezetrol) 10 mg möglich, senkt das LDL-Cholesterin zusätzlich und bringt zusätzlichen prognostischen Nutzen.
- Bempedoinsäure, PCSK9-Hemmer oder Inclisiran bei selektionierten Patienten → Siehe «Hyperlipidämien - Medikamentöse Therapie» Seite 47
- Für alle Diabetiker zusätzlich SGLT2-Hemmer siehe «Diabetes» Seite 27

Substanzen, die das linksventrikuläre Remodeling beeinflussen

- Nach durchgemachtem Herzinfarkt und eingeschränkter linksventrikulärer Auswurffraktion (left ventricular ejection fraction: LVEF < 40%) Betablocker und ACE-Hemmer: bei ACE-Hemmer Unverträglichkeit: Angiotensin-Rezeptor-Blocker. ACE-Hemmer auch ohne früheren Infarkt, falls nicht low risk (siehe nachfolgende Tabelle 4 Seite 122), insb. bei arterieller Hypertonie, aber nur lipophile ACE-Hemmer (Perindopril, Ramipril), da nur bei diesen Substanzen primär ein Effekt auf die Atherosklerose vermutet wird.
- Zusätzlich Eplerenon bei LVEF < 40% 3-14 Tage nach Myokardinfarkt und guter Background-Therapie (ACE-Hemmer und Betablocker); später nach Infarkt: LVEF < 35% und NYHA II → Eplerenon (Inspra), LVEF < 35% und NYHA ≥ III → Spironolacton (für weitere Details bezüglich Therapie der manifesten Herzinsuffizienz: siehe Kapitel «Herzinsuffizienz» Seite 237)

Medikamente mit günstigem Einfluss auf das LV-Remodelling

Medikament und Dosis	Indikation	Kommentar
ACE-Hemmer - Enalapril: 20-40 mg - Lisinopril: 10-20 mg - Perindopril 4-8 mg - Ramipril: 5-10 mg - Trandolapril: 2-4 mg	Arterielle Hypertonie Asymptomatische linksventrikuläre Dysfunktion (LVEF < 40%) Herzinsuffizienz Niereninsuffizienz Diabetes Alle anderen Patienten, die nicht low risk sind (low risk = rewaskularisiert und gut kontrollierte Risikofaktoren)	UEW: Reizhusten, Angioödem, Hyperkaliämie, Verschlechterung Nierenfunktion → Überwachung Kalium und Nierenfunktion
ARB Valsartan: 160-320 mg Losartan: 150 mg Candesartan: 8-16 (32) mg	Alternative zu ACE-Hemmer bei ACE-Hemmer-Intoleranz	UEW: wie ACE-Hemmer ausser Reizhusten (Cave: Angioödem auch möglich)
Eplerenon: 25–50 mg	Früh (3-14 Tage) nach Myokardinfarkt und bei Vorliegen all der folgenden Bedingungen: LVEF < 40% Therapie mit ACE-Hemmer und Betablocker Herzinsuffizienz oder Diabetes Keine relevante Niereninsuffizienz (Kreatinin < 220 mcmol/l) und/oder Hyperkaliämie (< 5 mmol/l)	 UEW: erhöhtes Hyperkaliämierisiko → Überwachung von Kalium und Nierenfunktion
Betablocker Metoprolol: 100-200 mg Bisoprolol: 5-10 mg Nebivolol: 5-10 mg Carvedilol: 25-50 mg (Kein Atenolol)	Nach Myokardinfarkt Asymptomatische linksventrikuläre Dysfunktion Herzinsuffizienz	Kontraindiziert bei Asthma, Sick Sinus, höhergradigem AV-Block Vorsicht bei COPD, PAVK, AV- Block I

Tab. 4. ARB = Angiotensin-Rezeptor-Blocker; UEW = unerwünschte Wirkungen

Antiischämische Therapie

Prinzip

Das Auftreten einer myokardialen Ischämie hängt von der Balance zwischen Sauerstoffzufuhr und -bedarf ab. Im Falle einer signifikanten Stenose ist die Zufuhr bzw. die Zufuhrreserve reduziert, sodass es bei einem Anstieg des Bedarfs im Rahmen körperlicher Belastung zu einer Ischämie kommt. Folgende Faktoren bestimmen den Sauerstoffbedarf des linken Ventrikels:

- Kontraktilität
- Herzfreauenz
- Wandspannung

Grundsätze der Behandlung

- · Individualisierte Therapie
- Verschiedene Kombinationen möglich; Auswahl gemäss Wirkung und Nebenwirkungsprofil (siehe nachfolgende Tabelle 5 Seite 124)
- Die primäre Basistherapie besteht aus Betablocker und/oder Kalziumkanalblocker, wobei sich die Auswahl des Kalziumkanalblockers nach der Herzfrequenz richtet.
- Die Dosierung der einzelnen antianginösen Substanz sollte vor Ergänzung durch ein zweites Medikament zuerst nach oben titriert werden.
- Persistierende Beschwerden trotz antianginöser Zweiertherapie können in der Regel durch den Zusatz einer dritten antianginösen Substanz nur noch wenig beeinflusst werden. Diese Patienten profitieren in der Regel von einer kathetertechnischen oder chirurgischen Revaskularisation, falls eine solche möglich ist.

Antiischämische Medikamente

Medikament und Dosis	Indikation	Kommentar
Betablocker - Atenolol: 100 mg - Metoprolol: 100-200 mg - Bisoprolol: 5-10 mg	First-line Antianginosum	Von ca. 15% aller Patienten nicht toleriert Betablockade anhand Ruhe und Belastungsfrequenz überprüfen
Kalziumkanalblocker Amlodipin: 5-10 mg Nifedipin: 30-60 mg Verapamil: 2× 120 mg: 2× 240 mg Diltiazem: 2× 90 mg: 1× 240 mg (max. 360 mg)	Alternative zu Betablocker (auch Firstline Antianginosum) Kombination von Dihydropyridin* mit Betablocker Kalziumkanalblocker auch bei vermuteter vasospastischer Komponente	UEW: Flüssigkeitsreten- tion (Knöchelödeme), Kopfschmerzen, Obsti- pation (Verapamil)
Kurz wirksame Nitrate Glyceroltrinitrat: Kapseln 0.8 mg; 2 Hübe (0.8 mg) Lang wirksame Nitrate Isosorbid-Mono- nitrat: 40-60 mg Isosorbid-Dinitrat: 1-2×100 mg Glyceroltrinitrat (transdermal): 5-10 mg/24h	Behandlung des akuten Anfalls Dauertherapie, Kombination mit ande- ren Antianginosa	UEW: Kopfschmerzen, Schwindel, Flush Nitrat-freies Intervall beachten Kontraindiziert bei gleichzeitiger PDEI-The- rapie
Molsidomin: Retardierte Form, 2–3× 4 mg bis 2× 8 mg	Als 24h-Therapie (1–3 Dosen; keine Toleranzentwicklung) Eine Dosis im Nitrat- freien Intervall	· UEW wie Nitrate
Nicorandil: 2×10-20 mg	Add-on-Therapie, kann mit Nitraten und Molsidomin kombiniert werden	UEW: gastrointestinale Ulcera, daher Reser- vemedikament, ansons- ten wie Nitrate Kontraindiziert mit PDEI

Tab. 5: * Amlodipin und Nifedipin = Dihydropyridine UEW = unerwünschte Wirkungen; PDEI = Phosphodiesterase-Inhibitoren

Ranolazin: 2× 375-750 mg	Add-on-Therapie zu Betablocker (Cave: Sotalol wegen Interaktion), Amlodipin (Cave: Diltiazem, Verapamil wegen Inter- aktion), Nitraten	UEW: Übelkeit und Schwindel Kontraindiziert bei schwerer Nieren- oder Leberinsuffizienz, gleichzeitiger Gabe von Klasse-III-Antiarrhythmika (ausser Amiodaron) Interaktionspotenzial (CYP3A4)
Ivabradin: 2× 2.5–7.5 mg	Patienten im Sinusrhythmus, die Betablocker nicht tolerieren, bei denen Betablocker kontraindiziert sind oder bei denen Betablocker die Herzfrequenz ungenügend senken. Kann auch bei Patienten mit Herzinsuffizienz mit eingeschränkter LVEF eingesetzt werden Vorsicht bei Patienten mit schwerer Angina (CCS 3): in dieser Situation Ausbau Betablockade und/oder Revaskularsation prüfen	UEW: Phosphene (häufig, aber transient) Kontraindiziert bei Sick- Sinus, akuter KHK Torsade-de-pointe beschrieben

Invasive Therapie

Eine Revaskularisation muss bei Hinweisen auf eine mittelgrosse oder grosse myokardiale Ischämie (Revaskularisation aus prognostischen Gründen) und/ oder bei fehlendem Ansprechen der Symptomatik auf eine medikamentöse antiischämische Therapie (symptomatische Indikation) erwogen werden.

Device-Therapie der therapierefraktären Angina bei Patienten ohne Revaskularisationsoptionen

Diese Therapien (Rückenmarksstimulation, Koronarsinus-Stent) sind noch in Entwicklung und nur in ausgewählten Einzelfällen eine Option.

Quellen/Links

- www.agla.ch
- Knuuti J et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41
 (3):407-477. https://doi.org/10.1093/eurheartj/ehz425
- Fihn SD, Gardin JM, Abrams J et al. 2012 ACCF/AHA/ACP/AATS/ PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease. J Am Coll Cardiol. 2012. 60;24:e44-e164; https://doi.org/10.1016/j.jacc.2012.07.013

Dr. Lucas Jörg

Prof. Dr. Dr. Flavio Forrer

Dr. Olaf Chan-Hi Kim

Dr. Sebastian Kopp

Prof. Dr. Sebastian Leschka

Prof. Dr. Micha Maeder

Prof. Dr. Hans Rickli

Tiefe Venenthrombose und Lungenembolie

Tiefe Venenthrombose (TVT)

Risikofaktoren

Klassische hereditäre und erworbene Thrombophilien			
Faktor-V-Leiden (APC-Resistenz)	Antithrombin-III-Mangel		
Prothrombin-G20210A-Mutation	Antiphospholipid-Syndrom		
Protein-C-, Protein-S-Mangel	Positive Familienanamnese (erstgradig verwandt)		
Paroxysmale nächtliche Hämoglobinurie (PNH)	Myeloproliferative Neoplasien (v.a. JAK2V617F-Mutation)		

Risikofaktoren für thromboembolische Ereignisse				
Trauma/Operation	Apoplexie			
Immobilisation	Myokardinfarkt, Herzinsuffizienz			
Alter	Chronisch venöse Insuffizienz			
Adipositas	Rauchen			
Maligne Erkrankungen/Chemothera- pie	Schwangerschaft/Wochenbett			
Nephrotisches Syndrom	Orale Kontrazeptiva, Östrogentherapie			
Liegende zentralvenöse und pulmo- nalarterielle Katheter	Hypervisköse Veränderungen (Polyzythämie, M. Waldenström)			
Glukokortikoidtherapie	Langstreckenflug			
St. nach TVT oder LE	Medikamente: Tamoxifen, Antipsychotika, Thalidomid u.v.a.			

Tab. 1: Thrombophilien und Risikofaktoren für tiefe Beinvenenthrombosen/Lungenembolien

Diagnostik der TVT

Vortestwahrscheinlichkeit für das Vorliegen einer TVT

Das Abschätzen der Vortestwahrscheinlichkeit ist unabdingbar zur Beurteilung der Diagnostik bei der TVT. Der Wells Score (Tab. 2) ist ein gebräuchliches Hilfsmittel dafür. Allerdings darf dieses im Vergleich zur integralen klinischen Beurteilung eines erfahrenen Arztes nicht überschätzt werden.

Variable	Punkte
Aktive Krebserkrankung	+1
Lähmung oder kürzliche Immobilisation der Beine	+1
Bettruhe (> 3 Tage), grosse Chirurgie in den letzten 12 Wochen	+1
Schmerz entlang der tiefen Venen	+1
Schwellung ganzes Bein	+1
Schwellung des Unterschenkels (> 3 cm Umfangsdifferenz)	+1
Eindrückbares Ödem am symptomatischen Bein	+1
Prominente Kollateralvenen	+1
Frühere, dokumentierte TVT	+1
Alternative Diagnose ebenso wahrscheinlich wie TVT	-2
≥ 2 Punkte → hohe Wahrscheinlichkeit für TVT < 2 Punkte → tiefe Wahrscheinlichkeit für TVT	(28%) (6%)

Tab. 2: Wells Score zur Abschätzung der Vortestwahrscheinlichkeit einer tiefen Beinvenenthrombose (Wertigkeit des Wells Score mit D-Dimer-Test bei Karzinompatienten umstritten)

D-Dimer-Test bei TVT

Die empfindlichen D-Dimer-Tests (ELISA) eignen sich aufgrund ihrer hohen Sensitivität zum Ausschluss von Beinvenenthrombosen. Wegen der geringen Spezifität genügt ein positiver D-Dimer-Test nicht zum Nachweis eines thromboembolischen Geschehens. Der Grenzwert von 500 µg/l kann bei einem Alter über 50 Jahren mit der Formel Alter × 10 µg/l angepasst werden. Ein positiver D-Dimer-Test genügt auch in Kombination mit einer hohen Vortestwahrscheinlichkeit nicht für die Diagnose einer TVT, sondern es muss ein bildgebendes Verfahren angeschlossen werden. Generell wird bei hoher Vortestwahrscheinlichkeit direkt eine Bildgebung empfohlen.

Ein negativer D-Dimer-Test schliesst bei klinisch nicht hoher Vortestwahrscheinlichkeit eine tiefe Beinvenenthrombose mit hoher Wahrscheinlichkeit aus

Kompressionsultraschall der Beinvenen bei TVT

Die Kompressionssonografie in den Händen eines geübten Untersuchers mit einem hochauflösenden Gerät ist heute das diagnostische Mittel der Wahl. Sie hat die Phlebografie als Gold-Standard zum Nachweis einer TVT abgelöst. Aus strahlenhygienischen Gründen besteht zudem heute keine Indikation für die Durchführung einer CT-Venografie der Beinvenen

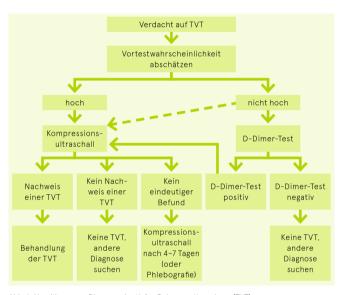


Abb. 1: Algorithmus zur Diagnose der tiefen Beinvenenthrombose (TVT)

Therapie der tiefen Beinvenenthrombose (TVT)

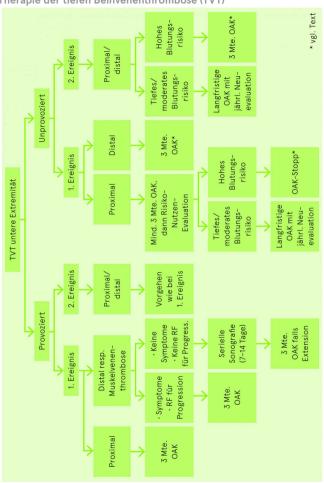


Abb. 2: Algorithmus zur Therapiedauer der tiefen Beinvenenthrombose (TVT)

Therapie der oberflächlichen Thrombophlebitis, Varikothrombose Bei Befall von V. saphena magna oder parva wird eine Duplexsonografie

auch der tiefen Venen empfohlen.

- Bei Thrombus nahe (< 3 cm) des tiefen Venensystems (z.B. Perforantes und insbesondere Mündung von V. saphena in V. femoralis communis oder V. poplitea [= Crosse]) erfolgt die Behandlung wie im Fall einer tiefen Venenthrombose. Bei Kontraindikation für Antikoagulation interdisziplinäre Besprechung.
- Bei ≥ 3 cm Entfernung vom tiefen Venensystem und Thrombuslänge ≥ 5 cm (v.a. im Bereich der supragenualen V. saphena magna und deren grösserer Seitenäste): Therapie mit Fondaparinux, NMH oder Rivaroxaban in prophylaktischer Dosierung für 45 Tage.
- Bei oberflächlicher Thrombophlebitis oder auch Thrombenbildung im tiefen venösen System im Rahmen von Eingriffen an den venösen Gefässen (z.B.: Sklerotherapie, endovenöse Interventionen) sollte die Therapie. Therapiedauer und Kontrolle mit der behandelnden Klinik abgestimmt werden.

Begleitend zur Antikoagulation sollte ieweils eine Kompressionsbehandlung bis zum Abklingen der Symptome erfolgen.

Bei kleinem Befund (< 5 cm) und fern von Crosse/tiefem Venensystem: Kühlung, Kompression, NSAR lokal oder po und klinische Verlaufskontrolle

Wiederholung der klinischen (und bei Bedarf sonographischen) Untersuchung nach 45 Tagen – oder bei Symptomyerschlimmerung früher – zur Beurteilung des Beginns resp. einer Verlängerung der Antikoagulation und allenfalls Suche nach Malignom oder Hyperkoagulabilität.

Therapie der isolierten distalen Venenthrombose

Bei der isolierten distalen (unterhalb V. poplitea) TVT ohne Symptome und ohne Risikofaktoren für eine Progression (positiver D-Dimer-Test; Nähe zu proximalen Venen; Thrombose > 5 cm lang; mehrere Venen betreffend oder > 7 mm Durchmesser; kein auslösender Risikofaktor; persistierender, irreversibler Risikofaktor, wie z.B. eine aktive Krebserkrankung; Anamnese von TVT oder LE; Hospitalisation oder verlängerte Immobilisation) empfehlen wir serielle sonographische Verlaufskontrollen während 2 Wochen. Bei schweren Symptomen, Risikofaktoren für eine Ausdehnung oder sonographisch nachgewiesener Extension wird analog einer proximalen TVT behandelt.

Die Antikoagulationsdauer beträgt in der Regel jedoch nicht länger als 3 Monate (Ausnahmen diskutieren im Fall eines identifizierten und fortbestehenden Risikofaktors wie z.B. Antiphospholipid-Syndrom, aktive Tumorerkrankung).

Reine Muskelvenenthrombosen haben ein geringeres Extensionsrisiko, werden jedoch wie die distalen TVT behandelt. Schwere Symptome resp. Risikofaktoren für eine Progression (siehe oben) sprechen eher für eine Antikoagulation, ein hohes Blutungsrisiko dagegen.

Therapie der proximalen tiefen Beinvenenthrombose (TVT)

Bei der proximalen TVT unterscheidet sich die antithrombotische Therapie nicht von derjenigen von Lungenembolien. Zur Übersicht der medikamentösen Therapieoptionen siehe Seite 139 ff.

Nur eine Phlegmasia coerulea dolens ist eine absolute Indikation für eine chirurgische oder kathetertechnische Thrombektomie oder eine Thrombolyse.

Relative Indikationen können deszendierende Beckenvenenthrombosen, optimalerweise mit erhaltenem venösem Zufluss über femoral, mit schwerer Symptomatik sein. Es profitieren in solchen Fällen primär jüngere Patienten mit möglichst kurz dauernder Symptomatik (maximal wenige Tage), gutem Allgemeinzustand und tiefem Blutungsrisiko von einer Thrombolyse.

Kompressionstherapie

Die Kompressionstherapie (initial mit Kurzzugbinden und nach Abschwellung mit Unterschenkel-Kompressionsstrümpfen der Klasse II) wird möglichst früh begonnen um längerfristig ein postthrombotisches Syndrom zu vermeiden. Die Dauer der Kompressionsbehandlung sollte sich daran orientieren, ob ein venöses Funktionsdefizit (mit vor allem Schwellungsneigung der Beine) fortbesteht und wie allfällige phlebologische Kontrolluntersuchungen (evt. nach 3-6 Monaten und dann in 6-12 monatigen Intervallen) ausfallen.

Mobilisation

Patienten mit TVT unter etablierter Antikoagulation können mit eingebundenen Beinen nach Massgabe der Beschwerden mobilisiert werden, und zwar unabhängig von Ausmass, Lokalisation und Morphologie der TVT

Lungenembolie (LE)

Die Mortalität liegt ohne Behandlung um 30%, mit Behandlung bei 2-11%.

Das Risiko für die Entwicklung einer chronischen thromboembolischen pulmonal-arteriellen Hypertonie (CTEPH) nach unprovozierten Lungenembolien beträgt ca. 1.5%.

Zusammenhang zwischen TVT und LE

Ca. 90% der LE sind Folge einer TVT (Autopsiebefunde). Bei akuten. symptomatischen Lungenembolien finden sich mittels Kompressionsultraschall nur in 30-50% (-70%) Beinvenenthrombosen. Dieser Nachweis ist aber mit einer erhöhten Mortalität assoziiert.

Risikofaktoren für I F

Die Risikofaktoren entsprechen denjenigen für TVT (siehe Tab. 1).

Diagnostik der LE

Beurteilung der klinischen Stabilität

Bei Verdacht auf LE muss als erster Schritt evaluiert werden, ob der Patient im Schock ist und damit gemäss der Abb. 3 vorgegangen werden muss. In solchen Fällen ist die Vortestwahrscheinlichkeit per se schon hoch. Stabile Patienten werden gemäss Abb. 4 abgeklärt.

Vortestwahrscheinlichkeit

Die Bestimmung der Vortestwahrscheinlichkeit mit dem modifizierten Genfer Score oder dem Wells Score (Tab. 3) ist zusammen mit der Erfassung der klinischen Gesamtsituation unabdingbar zur Beurteilung der Diagnostik bei LE.

Modifizierter Genfer Score		Wells-Score	
Variable	Punkte	Variable	Punkte
Alter > 65 Jahre	+1		
Frühere TVT oder LE	+3	Frühere TVT oder LE	+1.5
Operation oder Fraktur im letzten Monat	+2	Frische Operation oder Immobilisation	+1.5
Aktive Krebserkrankung	+2	Krebserkrankung	+1
Einseitige Beinschmerzen	+3		
Hämoptyse	+2	Hämoptyse	+1
Herzfrequenz 75-94/Min.	+3		+1.5
Herzfrequenz ≥ 95/Min.	+5	Herzfrequenz > 100/Min.	
Schmerz bei Palpation der tiefen Beinvenen und einseitiges Ödem	+4	Klinische Zeichen einer TVT	+3
		Alternative Diagnose unwahr- scheinlicher als LE	+3
Klinische Wahrscheinlichkeit		Klinische Wahrscheinlichkeit	
Niedrig (8%)	0-3	Niedrig (3%)	0-1
Mittel (28%)	4-10	Mittel (28%)	2-6
Hoch (74%)	≥ 11	Hoch (78%)	≥ 7

Tab. 3: Modifizierter Genfer Score und Wells-Score zur Abschätzung der Vortestwahrscheinlichkeit von Lungenembolien

D-Dimer-Test bei LE

Der D-Dimer-Test eignet sich aufgrund seiner hohen Sensitivität und der geringen Spezifität nur zum Ausschluss von Lungenembolien. Der Grenzwert von 500 μ g/l kann bei einem Alter über 50 Jahren mit der Formel Alter \times 10 μ g/l angepasst werden.

Ein negativer D-Dimer-Test schliesst bei tiefer und mittlerer Vortestwahrscheinlichkeit eine LE mit klinisch genügender Sicherheit aus.

Eine hohe Vortestwahrscheinlichkeit und ein positiver D-Dimer-Test genügen nicht für die Diagnose einer LE. Bei hoher Vortestwahrscheinlichkeit wird von der Durchführung des D-Dimer-Tests abgeraten und direkt ein bildgebendes Verfahren empfohlen.

Kompressionsultraschall der Beinvenen bei Verdacht auf LE

Der Nachweis einer tiefen Beinvenenthrombose genügt bei entsprechenden Symptomen zum Nachweis von Lungenembolien. Mit Durchführung eines Kompressionsultraschalls vor dem Lungenembolie-CT können ca. 10% der CTs gespart werden.

Lungenembolie-Computertomografie (LE-CT)

Heute ist die CT der Gold-Standard zum Nachweis oder Ausschluss von segmentalen oder proximalen Lungenembolien (negativer Vorhersagewert ca. 99%). Moderne Mehrzeilen-CT erlauben zunehmend die Diagnose von isolierten subsegmentalen Lungenembolien.

Ventilation-/Perfusion-SPECT/CT

Diese Untersuchungsmethode kommt bei Kontraindikationen (schwere Niereninsuffizienz, manifeste Hyperthyreose, Anaphylaxie auf KM) für eine LE-CT oder Schwangerschaft und unauffälligem konventionellem Röntgenbild der Lunge in Frage.

Ein normales Perfusionsverteilungsmuster schliesst Lungenembolien mit klinisch genügender Wahrscheinlichkeit aus (negativer Vorhersagewert = negative predictive value 97 - 99%). Limitierend sind Lungengerüsterkrankungen (z.B. bei COPD, Lungenemphysem), die ein Ventilations-/Perfusions-Mismatch verbergen können.

Die Ventilations-Perfusions-SPECT/CT hat eine höhere Sensitivität als die LE-CT für kleine peripher okkludierende Embolien, sodass bei der chronischen pulmonal-arteriellen Hypertonie mit Frage nach rezidivierenden, peripheren Lungenembolien die Ventilations-/Perusions-SPECT/CT das Mittel der Wahl ist.

Risikostratifizierung bei LE

	Risikomarker				
frühes Mor- talitätsrisiko	Schock oder Hypotonie	PESI-Klasse III – V	Rechtsven- trikuläre Dys- funktion (Echo, CT)	Kardiale Bio- marker (BNP, Troponin)	Therapie- implikationen
Hoch > 15%	+	(+)	+	(+)	Thrombolyse oder Embo- lektomie
Intermediär hoch	-	+	+	+	Hospitalisa- tion, Rescue Reperfusion bei Ver- schlechte- rung
Intermediär tief	-	+	+ - -	- + -	Hospitalisa- tion, Rescue Reperfusion bei Ver- schlechte- rung
Tief < 1%	-	-	-	-	

Tab. 4: Risikostratifizierung bei LE. Bestimmung der kardialen Biomarker bei hohem und tiefem Risiko fakultativ. Rechtsventrikuläre Dvsfunktion: im CT erhöhte Ratio RV/LV-Durchmesser (> 0.9, ohne EKG-Synchronisierung); kardiologische Beurteilung im Echo

Faktoren, die bei der Beurteilung des Risikos helfen, sind in Tab. 4 aufgelistet.

Liegt keine hämodynamische Instabilität (Abb. 3) vor, bei der eine möglichst rasche Wiedereröffnung der Pulmonalarterien dringlich ist, empfiehlt sich die Berechnung des PESI-Scores (Tab. 5). und ein Vorgehen nach Abb. 4. Bei hohem und intermediär hohem Risiko ist eine Echokardiografie durchzuführen. Bei einem intermediär tiefen Risiko sollte eine Echokardiografie in den ersten Tagen der Hospitalisation durchgeführt werden.

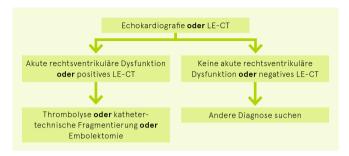


Abb. 3: Algorithmus LE bei Patienten im Schock

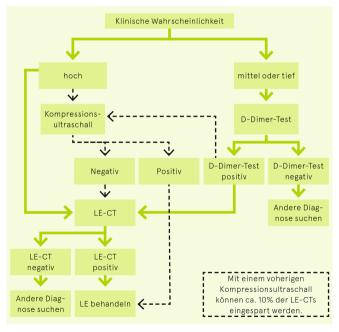


Abb. 4: Algorithmus LE bei hämodynamisch stabilen Patienten

Merkmale	Punkte
Alter	+1/Jahr
Männliches Geschlecht	+10
Krebs in der persönlichen Anamnese	+30
Herzinsuffizienz	+10
Chronische Atemwegserkrankung	+10
Herzfrequenz ≥ 110 pro Min.	+20
Systolischer arterieller Blutdruck < 100 mmHg	+30
Atemfrequenz ≥ 30 pro Min.	+20
Temperatur < 36 °C	+20
Störung des Bewusstseins (Desorientiertheit, Lethargie, Stupor o. Koma)	+60
Arterielle Sauerstoffsättigung < 90%	+20
Der Gesamtscore wird durch Addition der Punktezahlen der vorliegenden klinischen Merkmale gebildet.	

Punkte	Klasse	30-Tage-Mortalität
≤ 65	Klasse I	0.0-1.6%
66-85	Klasse II	1.7-3.5%
86-105	Klasse III	3. 2-7.1%
106-125	Klasse IV	4.0-11.4%
≥ 126	Klasse V	10.0-24.5%

Tab. 5: Pulmonary Embolism Severity Index (PESI)

Therapie der LE

Bei hämodynamischer Instabilität ist eine dringende, rasche Wiedereröffnung (mittels Thrombolyse, kathetertechnischer Fragmentierung oder Embolektomie) der Pulmonalarterien die allenfalls lebensrettende Massnahme.

Bei weniger schweren Fällen geht es in erster Linie um eine rasch zu beginnende Antikoagulation zur Verhinderung der Progression des thrombotischen Prozesses und zur Verhinderung von Rezidiven.

Antithrombotische Therapie bei TVT und LE

Substanz	Dosierung
Enoxaparin (Clexane) sc	1 mg/kg (2×/Tag) oder 1.5 mg/kg (1×/Tag)
Heparin iv	Bolus 80 E/kgKG Startgeschwindigkeit Infusion 18 E/kgKG/Std.; Weitere Anpassungen nach Labor* Stopp, wenn INR an zwei Tagen ≥ 2.0
Bei Heparin-induzierter Thrombopenie (HIT)** Argatroban (Argatra) iv	Gemäss Merkblatt «Argatroban (Argatra)» der Gruppe für Arzneimitteltherapiesicherheit des KSSG
Bei Heparin-induzierter Thrombopenie (HIT)** Fondaparinux (Arixtra) sc	KG < 50 kg: 5 mg/Tag sc KG 50-100 kg: 7.5 mg/Tag sc KG > 100 kg: 10 mg/Tag sc
Phenprocoumon (Marcoumar)	Beginn gleichentags Stunden nach Beginn von Heparin oder NMH bis INR \geq 2.0, anschliessend 1×/Tag gemäss INR, Ziel-INR 2.5 (2.0–3.0)
Rivaroxaban (Xarelto)	15 mg (2×/Tag für 3 Wochen; kein zusätzliches Heparin oder NMH), dann 20 mg (1×/Tag)
Apixaban (Eliquis)	10 mg (2×/Tag für 7 Tage; kein zusätzliches Heparin oder NMH), dann 5 mg (2×/Tag)
Edoxaban (Lixiana)	Initial mind. 5 Tage Heparin/NMH, dann 60 mg (1×/Tag)
Dabigatran (Pradaxa)	Initial mind. 5 Tage Heparin/NMH, dann 150 mg (2×/Tag)

Tab. 6 Antithrombotische Therapie bei TVT und LE

Bei hoher Vortestwahrscheinlichkeit für eine LE wird die Therapie (Heparin-Bolus, 1. Dosis des NMH oder NOAK [Apixaban, Rivaroxaban]) vor der Vervollständigung der Diagnostik eingeleitet.

Bei unfraktioniertem Heparin (UFH) und niedermolekularem Heparin (NMH) ist eine regelmässige Thrombozytenkontrolle (z.B. am Tag 0, 5, 7, 9) notwendig wegen der Möglichkeit einer Heparin-induzierten Thrombopenie (HIT).

Bei Niereninsuffizienz (geschätzte, absolute (nicht auf eine Körperoberfläche von 1.73 m² normierte) glomeruläre Filtrationsrate eGFR < 30 ml/

^{*} Steuerung im KSSG nach PiCT, in anderen Spitälern nach aPTT, Anti-Faktor-Xa-Aktivität, etc.

^{**} Rücksprache mit Hämatologen/Hämostaseologen empfohlen

min), schwerem Übergewicht oder geplanter Reperfusion wird die labor-gesteuerte¹, kontinuierliche Gabe von unfraktioniertem Heparin empfohlen. Bei allen Patienten ist immer das Blutungsrisiko unter Antikoagulation gegen das Thromboembolierisiko ohne Antikoagulation abzuwägen.

Bei hohem Blutungsrisiko nach einem ersten oder zweiten unprovozierten thromboembolischen Ereignis, das eine Fortführung der voll dosierten Antikoagulation über drei Monate hinaus nicht rechtfertigt, ist Apixaban (2× 2.5 mg/Tag) oder Rivaroxaban (1× 10 mg/Tag) gegenüber keiner antithrombotischen Therapie abzuwägen.

Erstes Ereignis	Dauer
Transienter Risikofaktor (z.B. Operation)	3 Monate
Unprovozierte Genese - TVT isoliert distal	Sonographisches Follow up während 2 Wochen oder OAK für 3 Monate (siehe Text)
Unprovozierte Genese - TVT proximal oder LE	3 Monate, anschliessend gemäss Blutungsrisiko
 bei geringem und moderatem Blutungsrisiko und gutem Monitoring (regelmässige Nutzen-Risiko- Evaluation); bei hohem Blutungsrisiko 	Zeitlich unbegrenzt In der Regel begrenzt auf 3 Monate
Bei aktiver Krebskrankheit	
NMH, alternativ bei tiefem Blutungsrisiko – jedoch nicht bei gastrointestinalen Tumoren oder niedri- gem <u>Perfomance Score</u> – Edoxaban, Rivaroxaban oder Apixaban (vgl. Text)	Zeitlich unbegrenzt (mindestens solange maligne Erkrankung aktiv)
Antiphospholipid-Antikörper-Syndrom	Rücksprache mit Hämostaseologen
Rezidiv (TVT und LE)	Dauer

Tab. 7: Dauer der Antikoagulation bei TVT oder LE

Unprovozierte Genese

Zeitlich unbegrenzt

^{1.} Steuerung im KSSG nach PiCT, in anderen Spitälern nach aPTT, Anti-Faktor-Xa-Aktivität etc.

Das Vorliegen einer laborchemisch charakterisierten Thrombophilie bei einer provozierten Thrombose hat - mit Ausnahme des Antiphospholipid-Antikörper-Syndroms – in den meisten Fällen keinen Einfluss auf die Dauer der Antikoagulation.

Bei einem unprovozierten Zweitereignis ist mit und ohne Nachweis einer laborchemischen Thrombophilie die zeitlich unlimitierte orale Antikoagulation empfohlen (sofern kein hohes Blutungsrisiko vorliegt).

Behandlung der subsegmentale Lungenembolien

Bei Patienten mit subsegmentalen Lungenembolien (ohne Beteiligung von proximalen Lungenarterien und ohne proximale TVT), die ein tiefes Rezidivrisiko für eine Thromboembolie haben, kann unter gewissen Voraussetzungen auf eine antithrombotische Therapie verzichtet werden. Beim Verzicht auf eine Antikoagulation dürfen folgende Risikofaktoren nicht vorliegen: Hospitalisation oder reduzierte Mobilität, aktives Krebsleiden, nicht reversible Risikofaktoren für Thromboembolie, geringe kardiopulmonale Reserve oder deutliche Symptome, die nicht anders erklärt werden können. Eine serielle Phlebosonografie der Beine ist bei Verzicht auf eine antithrombotische Therapie zu erwägen. Ein hohes Blutungsrisiko spricht eher gegen eine Antikoagulation.

Thrombolyse

Ein Schock mit nachgewiesener rechtsventrikulärer Dysfunktion ist eine klare Indikation für eine Thrombolyse. Die Vollantikoagulation mit Heparin wird gleichzeitig eingeleitet.

Gelegentlich wird bei gutem hämodynamischen Ansprechen und/oder hohem Blutungsrisiko nur die halbe Dosis des Thrombolytikums verabreicht. Eine Rescue-Thrombolyse ist bei hämodynamischer Verschlechterung bis 14 Tage nach initialem Ereignis möglich. Beim Nachweis von mobilen rechtsventrikulären Thromben muss eine Thrombolyse resp. eine kathetertechnische oder chirurgische Embolektomie erwogen werden

Hämorrhagischer Schlaganfall

Ischämischer Schlaganfall in den letzten 3 Monaten

Hirntumor und Hirnmetastasen

Grösseres Trauma, grössere Operation, Schädelhirntrauma in den letzten 3 Wochen

Gastrointestinale Blutung im letzten Monat

Bekanntes Blutungsrisiko

Relative Kontraindikationen

TIA in den letzten 6 Monaten

Orale Antikoagulation

Schwangerschaft (bis 1 Woche postpartal)

Nicht komprimierbare Punktionsstellen

Traumatische Reanimation

Therapierefraktäre Hypertonie (> 180/110 mmHg)

Infektiöse Endokarditis

Fortgeschrittene Lebererkrankung

Aktives peptisches Ulkus

Tab. 8: Kontraindikationen für eine Thrombolyse

10 mg iv als Bolus, dann 90 mg iv über 2 Std. (falls Gewicht < 65 kg: Gesamtdosis 1.5 mg/kg iv: 10 mg als Bolus, Rest über 2 Std.)

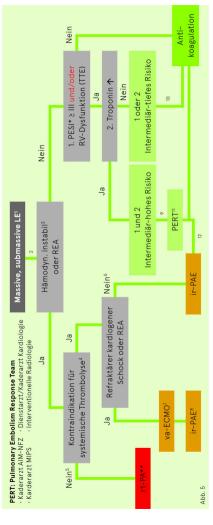
Tab. 9: Thrombolyseschemata bei Lungenembolie

Kathetertechnische Behandlung der Lungenembolie

Eine kathetertechnische Behandlung einer Lungenembolie kann bei Patienten der Risikogruppen «hoch» und «intermediär-hoch» evaluiert werden (siehe Tab. 4).

Bei hämodynamisch instabilen Patienten (Risikogruppe «hoch») mit Kontraindikationen für eine Thrombolyse ist – bei vorhandener Therapieindikation - eine schnellstmögliche Avisierung der Anästhesie (NFZ) bzw. Intensivisten vorzunehmen und die kathetertechnische Behandlung durch die interventionelle Radiologie sowie die anschliessende Betreuung auf der Intensivstation zu planen.

Patienten mit intermediär-hohem Risiko sind per definitionem kreislaufstabil, haben jedoch eine nachgewiesene Rechtsherzbelastung (TTE) und ein erhöhtes Troponin. Hier werden durch den Eingriff Surrogatparameter verbessert. Studien mit harten Endpunkten (Mortalität) fehlen noch. In ausgewählten Fällen kann bei intermediär-hohem Risiko eine kathetertechnische Therapie von Lungenembolien erwogen werden. Über die Durchführung des Eingriffs entscheidet das interdisziplinäre PERT (pulmonary embolism response team; bestehend aus Kaderärzten Allgemeine Innere Medizin, MIPS, Kardiologie, Interventionelle Radiologie).


Die Dokumentation der formalen Risikostratifizierung (Vitalparameter inkl. Temperatur und Atemfrequenz, Befund Echokardiografie, PESI-Score), der Entscheidungsfindung und des Entscheids ist Sache der behandelnden Klinik. Für den Fall einer weiteren Verschlechterung muss vor dem Eingriff die Fragen: 1) Mechanische Reanimation, 2) Intubation, 3) ECMO-Einlage zwingend geklärt und dokumentiert werden.

Da die Patienten gemäss Definition stabil sind, geschehen Entscheidungsfindung und Eingriff tagsüber. Während des Eingriffes werden Patienten von den Fachärzten der Anästhesie oder der zuständigen Intensivstation mitbehandelt. Die Terminabsprache erfolgt zwischen der interventionellen Radiologie und der Anästhesie (respektive Intensivstation).

Notwendige Vorbereitungen vor kathetertechnischer Thrombektomie:

- Heparin wird für den Eingriff nicht gestoppt oder dosisreduziert
- Notwendige Laboranalysen: Chemie (Natrium, Kalium, Harnstoff, Kreatinin), Blutbild (Hämatogramm II), Gerinnung (INR, Fibrinogen, D-Dimere), Blutgruppe, Testblut
- Bildgebung: CT-Angiografie (Thorax, evtl. zusätzlich abdomino-pelvin)

Algorithmus KSSG

- va-ECMO (veno-arterielle extrakorporale Membranoxygenierung) durch PS-Team (im NFZ im Falle einer Reanimation) ir-PAE mit Unterstützung von IPS-Team
- Bettenstation oder IPS (speziell, falls Laktat zwischen 2.3 und 3.3 mmol/L) Bettenstation 2 =

0

Hypoperfusion von Endorganen/Laktat ↑ (und keine andere Ursache

wie Hypovolämie, Sepsis oder Arrhythmie)

BD syst < 90 mmHg > 15 min oder Bedarf an Vasopressoren mit

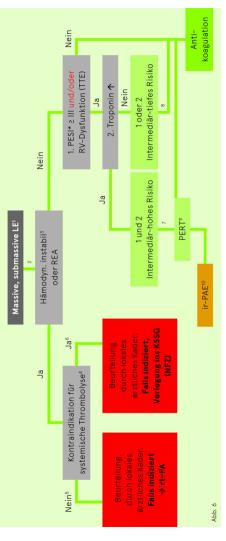
Prüfe immer zuerst Sinn und Indikation der Behandlung

(Patient & klinische Situation)

Starte Antikoagulation

- Kontaktiere PERT (Pulmonary Embolism Response Team) am nächsten Morgen (bzw. tagsüber jederzeit)
 - ir-PAE; Intervention mit Anasthesie (falls Pat. auf Bettenstation) oder PS-Team (falls Pat. auf IPS) am nächsten Tag 12
 - Tabelle 5 Pulmonary Embolism Severity Index (PESI)

Interventionell-radiologische pulmonalarterielle Embolektomie (ir-PAE) Kontraindikationen für eine Thrombolyse (Tabelle 8 Kontraindikationen


Intervention mit Anästhesie (oder IPS-Team, falls Pat. auf IPS)

Verlegung auf IPS (nach Start von rt-PA im Notfallzentrum (NFZ))

für eine Thrombolyse)

2 9 rekombinanter Plasminogenaktivator (rt-PA) z.B. Alteplase (Actilyse) **

Algorithmus für externe Spitäler

- Erwäge Verlegung ins KSSG via Dienstarzt Innere Medizin 9
- Überwachungsstation, Kontakt mit KSSG Dienstarzt Innere Medizin am nächsten Morgen
 - Bettenstation ω
- PERT: Pulmonary Embolism Response Team 6
- interventionell-radiologische pulmonalarterielle Embolektomie Tabelle 5 Pulmonary Embolism Severity Index (PESI) 0 *
 - Erwäge Verlegung in Spital mit Intensivstation (evtl. nach Start von rt-PA) eine Thrombolyse)

Hypoperfusion von Endorganen/Laktat ↑ (und keine andere Ursache Kontraindikationen für Thrombolyse (Tabelle 8 Kontraindikationen für

wie Hypovolämie, Sepsis oder Arrhythmie)

BD syst < 90 mmHg > 15 min oder Bedarf an Vasopressoren mit

Prüfe immer zuerst Sinn und Indikation der Behandlung

(Patient & Klinische Situation) Starte Antikoagulation

Implantation eines Filters in die Vena cava inferior

Die Einlage eines Cava-Filters kann indiziert sein bei absoluter Kontraindikation für eine Antikoagulation, bei rezidivierenden LE trotz suffizienter OAK, bei einem Polytrauma mit hohem Thromboembolierisiko, ausnahmsweise perioperativ bei frischer TVT und erhöhtem Blutungsrisiko mit passagerer Kontraindikation für eine Antikoagulation.

Die Datenlage zur Implantation von Cava-Filtern ist umstritten (keine Reduktion der Mortalität nachgewiesen), weshalb internationale Klasse-I-Empfehlungen bislang fehlen. Zudem beträgt die Komplikationsrate (Blutungen, Infektionen, Appositionsthromben, u.a.) je nach Literatur bis zu 19 %. Entsprechend sollte die Implantation eines Cava-Filters Einzelfällen vorbehalten sein und restriktiv gehandhabt werden. Prinzipiell macht die Einlage eines Cava-Filters die Antikoagulation nicht unnötig (Appositionsthromben auf Filter). Die Antikoagulation soll auch mit einem Cava-Filter so rasch wie möglich begonnen und dann der Cava-Filter rasch wieder entfernt werden. Es sind daher entfernbare Systeme zu verwenden.

Bettruhe

Bei hämodynamisch stabilen Patienten ohne rechtsventrikuläre Dysfunktion ist keine Immobilisierung erforderlich. Sobald eine rechtsventrikuläre Dysfunktion vorliegt, soll in den ersten Tagen eine Überwachung unter stationären Bedingungen erfolgen; ggf. bei «gelockerter» Bettruhe.

Die prospektive OTPE-Studie bestätigte, dass Patienten mit einem PESI Klasse ≤ II (siehe Tab. 5) auch ambulant behandelt werden können.

Weiterführende Diagnostik

Malignomsuche

Bei einer unprovozierten Thrombose oder Lungenembolie wird in 3-15% ein Malignom gefunden. Eine beschränkte diesbezügliche Dia-

gnostik (Anamnese, klinische Untersuchung, Routine-Hämatologie und -Chemie) wird empfohlen, wobei iedoch nicht nachgewiesen ist, dass dadurch Morbidität oder Mortalität gesenkt werden kann. Allenfalls Vervollständigung der anerkannten primärpräventiven Untersuchungen (Mammografie, gynäkologische Untersuchung, PAP-Abstrich, Koloskopie usw.). Weiterführende Diagnostik (Thorax-Röntgen, Abdomensonografie, CT, Endoskopien, Tumormarker usw.) nur bei entsprechenden Verdachtsmomenten, insbesondere bei jüngeren Patienten nach Ausschluss einer Thrombophilie.

Gerinnungsabklärung/Thrombophilie-Abklärung

Akutabklärung

- Bei familiärer Belastung mit Antithrombin- oder Protein-C-Mangel (hier ist eine Substitution zu erwägen: Beizug eines Spezialisten)
- Bei einer erneuten Thrombose unter unfraktioniertem Heparin oder NMH muss sofort eine HIT gesucht werden.

Abklärung idealerweise ungefähr 3 Monate nach dem Ereignis, falls

- Thromboembolie ohne ersichtlichen Grund und Alter < 50 Jahre
- Rezidivierende Thromboembolien
- Familiäre Belastung mit Thromboembolien
- Thrombosen an ungewöhnlichen Orten
- Neue Thromboembolie unter Antikoagulation
- Thromboembolie während der Schwangerschaft oder unter oralem Kontrazeptivum
- Thromboembolie und Abortneigung

Generell sollten in der Akutphase einer Thromboembolie keine funktionellen Untersuchungen erfolgen, da die zu untersuchenden Gerinnungsfaktoren durch die Thromboembolie verbraucht werden können und dies dann ohnehin eine zweite Untersuchung notwendig macht (Ausnahme AT-III-Bestimmung bei hohem Heparin-Bedarf), Genetische Tests können unter Heparinisierung, NOAKs und Vitamin K-Antagonisten durchgeführt werden, jedoch sind diese deutlich teurer als die funktionellen Screening-Methoden.

Gerinnungsanalysen nach Beendigung der oralen Antikoagulation APC-Resistenz und/oder Faktor-V-Leiden, Prothrombin-Genmutation G20210A, Protein C-Aktivität, Protein S-Aktivität, Antithrombin-Aktivität, Lupus Antikoagulans, Anticardiolipin-Antikörper, anti-beta-2-Glykoprotein-Antikörper, paroxysmale nächtliche Hämoglobinurie (falls Zytopenien, erhöhtes MCV, Hämolysezeichen), myeloproliferative Syndrome (z.B. mittels NGS-Panel) bei entsprechenden Blutbildveränderungen (Polyglobulie, Thrombozytose, Leukozytose). Suche nach JAK2V617F-Mutation bei splanchnischer oder zerebraler Venenthrombose auch bei normalem Blutbild. Bei einem initial normalen Protein-C-System-Test kann auf die Bestimmung von Protein C und von der APC-Resistenz bzw. die Suche nach einer Faktor-V-Leiden-Mutation verzichtet werden

Für diese Untersuchungen empfehlen wir die Zuweisung an einen Spezialisten (Hämostaseologe/Hämatologe).

Empfohlener zeitlicher Ablauf bei Suche nach einer Thrombophilie: 3 Monate Antikoagulation → Thrombophiliescreening → Entscheidung bezüglich Dauer der Antikoagulation (sofern nicht schon aufgrund von Klinik und Anamnese klar)

Bei relevant erhöhtem Risiko für ein Rezidiv (unprovozierte thromboembolische Ereignisse)

Vitamin K-Antagonist (Phenprocoumon oder Acenocoumarol) wird abgesetzt und nach Abfall der INR < 2 wird eine Thromboseprophylaxe begonnen (z.B. mit 1× täglich Enoxaparin [Clexane] 1 mg/kgKG sc oder allenfalls NOAK). Nach 3 Wochen wird das niedermolekulare Heparin gestoppt, am Tag nach dem Stopp erfolgt die Blutentnahme für die Thrombophilie-Abklärung (bei Niereninsuffizienz muss im Zweifelsfall die Anti-Xa-Aktivität – zum Nachweis der fehlenden NMH-Wirkung – bestimmt werden). Dann Wiederaufnahme der Prophylaxe bis zum Vorliegen der Laborresultate und Festlegen des weiteren Prozederes.

NOAK werden 36-48 Std. vor der Thrombophilieabklärung pausiert und können gleich anschliessend wieder gestartet werden bis zur Festle-

gung des definitiven Procederes. Für diese Abklärungen empfehlen wir die Zuweisung an einen Hämatologen/Hämostaseologen.

Spezielle Situationen

Rechtsventrikuläre Thromben

Bei echokardiografischem Nachweis von flottierenden Thromben im rechten Ventrikel (mit einer hohen frühen Letalität) wird eine Thrombolyse oder Embolektomie empfohlen.

Schwangerschaft

Die Inzidenz thromboembolischer Ereignisse beträgt 0.76 bis 1.72 pro 1000 Schwangerschaften. Der D-Dimer-Test ist in der Schwangerschaft physiologisch (leicht) erhöht und hilft deshalb nur weiter, wenn er nicht erhöht ist. Mit einem D-Dimer-Test von < 1'000 μg/l und fehlenden YEARS-Kriterien (klin. Zeichen einer TVT, Hämoptoe, LE wahrscheinlichste Diagnose) kann eine LE ausgeschlossen werden. Bei einem D-Dimer-Test von 500 μg/l kann auch bei vorhandenen YEARS-Kriterien eine LE ausgeschlossen werden. Trifft keine der beiden vorgenannten Situationen zu, so wird die Durchführung eines LE-CTs empfohlen. Zur Diagnose resp. zum Ausschluss einer LE kann bei Bedarf und nach Ausschöpfen der sonographischen Möglichkeiten (Phlebosonografie) auch ein LE-CT – ohne signifikantes Risiko für den Fötus und Mutter – durchgeführt werden. Während der Schwangerschaft Therapie mit NMH oder Heparin, postpartal mit Phenprocoumon (Marcoumar, auch bei Stillen erlaubt) für mind 3 Monate.

Auch in der Schwangerschaft soll jeder Verdacht auf Lungenembolie definitiv geklärt werden. Dazu gehört bei Notwendigkeit auch ein Lungenembolie-CT.

Maligne Erkrankungen

Bei Malignomen treten gehäuft thromboembolische Ereignisse auf.

Hier kommen therapeutisch NMH oder orale direkte Xa-Inhibitoren in Retracht

Bei Patienten ohne erhöhtes gastrointestinales Blutungsrisiko kann die Antikoagulation mit einem der zugelassenen oralen direkten Xa-Inhibitoren in üblicher Dosierung erfolgen, bei der Verwendung von Edoxaban und Dabigatran initial Therapie mit NMH oder UFH für mindestens 5 Tage notwendig. Dies gilt nur für Patienten mit einem guten Performance Status (ECOG < 3). Im Vergleich zu den NMH zeigen die NOAKs tendenziell einen besseren Schutz vor Rezidivereignissen bei allerdings leicht erhöhtem Blutungsrisiko, insbesondere im gastrointestinalen Bereich bei entsprechender Prädisposition.

Armvenenthrombose bei Zentralvenenkatheter oder Port-à-Cath

Antithrombotische Therapie wie bei TVT. Funktionierende, korrekt liegende, nicht infizierte Katheter können weiter benutzt werden. Weiterführung der antithrombotischen Therapie, solange ZVK oder Port-à-Cath in situ und 6–12 Wochen über die Entfernung derselben hinaus.

Rechtsventriklärer Dysfunktion

Wird im LE-CT oder in der Echokardiografie eine rechtsventrikuläre Dysfunktion festgestellt, dann empfiehlt sich eine Verlaufsechokardiografie nach 3 bis 6 Monaten hinsichtlich Entwicklung einer chronischen thromboembolischen pulmonalen Hypertonie (CTEPH).

Dr. Alexander Böhler

Dr. Enrique Alejandre-Lafont

Dr. Ulf Benecke

Dr. Lukas Graf

Dr. Lukas Kern

Dr. Gian-Reto Kleger

Dr. Joachim Müller

Prof. Dr. Hans Rickli

Dr. Jörg Scheler

Synkope resp. TLOC

Definition

Eine Synkope ist definiert als ein vorübergehender Bewusstseinsverlust (transient loss of consciousness = TLOC), verursacht durch eine globale zerebrale Hypoperfusion. Sie ist typischerweise gekennzeichnet durch einen plötzlichen Beginn, eine kurze Dauer und eine komplette, spontane Erholung.

Da Präsynkopen (= Beinahe-Synkopen: «Schwinden der Sinne», Gefühl einer drohenden Bewusstlosigkeit ohne Bewusstseinsverlust) ein ähnliches Risiko mit sich bringen, sollen diese wie Synkopen abgeklärt und behandelt werden.

Epidemiologie

Bis zu 50% der Bevölkerung erleiden in ihrem Leben eine Synkope. Die Inzidenz von Synkopen zeigt drei Gipfel bezüglich Häufigkeit, und zwar um rund 20, 60 und 80 Jahre. Die Häufigkeit steigt mit dem Alter an. Frauen sind etwas mehr betroffen als Männer. Rezidive treten in bis zu einem Drittel auf.

Reflex-Synkopen (bis 71%) resp. ungeklärte Ursachen (bis 41%) sind in allen Altersgruppen am häufigsten.

Prognose

Ca. die Hälfte aller Patienten mit Synkopen werden hospitalisiert. Die kurzfristige (7-30 Tage) Mortalität beträgt ca. 0.8%. Rund 10% hatten in dieser Zeit eine Komplikation oder einen Eingriff. Die langfristige Prognose (Mortalität) eines Patienten mit Synkopen hängt von der Ursache der Synkope ab. Kardiale und neurogene Synkopen haben auch langfristig eine schlechtere Prognose (6 Monatsmortalität bis 10%) als solche ohne erkennbare Ursache. Vasovagale Synkopen verschlechtern die Prognose nicht.

Klassifikation der Synkopen

Reflex-Synkopen (neural vermittelt)

Vasovagal

- Orthostatische vasovagale Synkope: im Stehen, weniger häufig im Sitzen
- Emotional: Angst, Schmerz, Instrumentation, Blut-/Spritzenphobie

Situativ

- Miktion (Post-Miktion)
- · Gastrointestinale Stimulation: Schlucken, Defäkation
- · Husten, Schnäuzen
- Nach Anstrengung
- Postprandial
- · Andere (z.B. Lachen, Blasinstrument-Spielen, Gewichtheben usw.)

Carotissinus-Syndrom

Atypische Formen

Synkopen ohne Prodromi und/oder ohne offensichtliche Auslöser und/oder atypische Präsentation.

Synkopen durch orthostatische Hypotonie (OH)

Medikamentös/toxisch bedingte orthostatische Hypotonie (häufigste Ursache der OH)

 Alkohol, Vasodilatatoren (z.B. Tamsulosin), Diuretika, Phenothiazine, Antidepressiva etc.

Hypovolämie

· Blutung, Diarrhö, Erbrechen usw.

Primäre autonome Insuffizienz (neurogene OH)

 Reine autonome Insuffizienz (PAF), Multisystematrophie (MSA), M. Parkinson, Demenz mit Lewy-Körperchen

Sekundäre autonome Insuffizienz (neurogene OH)

 z.B. Folge von: Diabetes mellitus, Amyloidose, Rückenmarksverletzung, auto-immun oder paraneoplastisch vermittelter autonomer Neuropathie, Urämie

Beachte: die Hypotonie kann durch venöses Pooling verstärkt werden (Anstrengung, postprandial und Bettruhe)

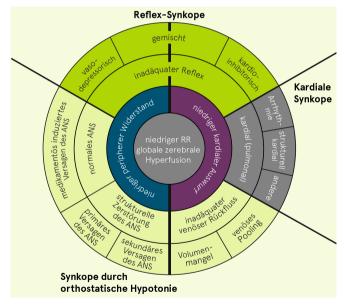
Kardiale Synkopen

Arrhythmie

Bradykardie

- Sinusknotendysfunktion (inkl. Brady-Tachykardie-Syndrom)
- · AV-Knoten-Erkrankungen

· Schrittmacher-Dysfunktionen


Tachvkardie

- · Supraventrikulär
- Ventrikulär

Medikamentös induzierte Brady- und Tachykardien

Strukturelle Erkrankungen

- Kardial: Aortenstenose, Myokardinfarkt, HOCM, Myxom, Perikardtamponade usw.
- · Andere: Lungenembolie, Aortendissektion, pulmonale Hypertonie

ANS = autonomes Nervensystem, RR = Blutdruck Nach: ESC/DGK Pocket-Leitlinien: Diagnostik und Therapie von Synkopen

Primäre Diagnostik

Die drei Hauptpfeiler der Diagnostik sind Anamnese, klinische Untersuchung und EKG. Verdachtsmomente aus dieser Basisdiagnostik triggern sämtliche weiteren Untersuchungen. Vgl. auch Algorithmus «Synkope auf der Notfallstation» Seite 161.

Essentiell ist die Klärung, ob die Definition einer Synkope (Rascher Beginn, kurze Dauer, rasche und komplette Erholung) erfüllt ist.

Anamnese und Fremdanamnese

Bei der Anamnese sind die genauen Umstände der Synkope (Auslöser, Prodromi, Verletzungen, Symptome nach Ereignis, usw.), Begleiterkrankungen (insbesondere kardiale), Medikation, persönliche und Familienanamnese zu erfragen. Unerlässlich ist auch die Fremdanamnese, auch wenn diese oft mit grossem Aufwand verbunden ist.

Bei einer globalen Hypoperfusion können in 12–50% Myoklonien auftreten, welche kein Epilepsie-Äquivalent sind. Zumeist sind es weniger als 10 Myoklonien, im Gegensatz zu epileptischen Anfällen, wo meist mehr als 20 Myokloni auftreten.

Klinische Untersuchung

Vitalparameter (BD, Puls, Temperatur, Atemfrequenz, perkutane O₂-Sättigung) werden gemessen und dokumentiert. Ein Orthostase-Test mit Messung von BD und Puls liegend, im Stehen sofort und nach 3 Min. wird durchgeführt. Bei der klinischen Untersuchung (Status) ist besondere Aufmerksamkeit auf die kardialen und neurologischen Befunde zu legen. DRU (digitale Rektaluntersuchung) bei Verdacht auf gastrointestinale Blutung. Mit einem «Bodycheck» wird nach Trauma-/Sturzfolgen gesucht.

EKG

Das 12-Ableitungs-EKG gehört zwingend zur Evaluation einer Synkope. Es kann einerseits bei der Diagnosestellung und andererseits bei der Risikostratifizierung weiterhelfen. Ein Hauptaugenmerk sollte auf die AV Überleitung, Schenkelblockierung, Sinusbradykardie, Kammertachykardien, pathologische Q Zacken, Präexzitation, QT Zeit, Brugada Pat-

tern, Repolarisationsstörungen (T-Inversion hinsichtlich arrhythmogener rechtsventrikulärer Kardiomyopathie) oder Epsilonwelle gerichtet werden

Mit Anamnese, klinischer Untersuchung, Ruhe-EKG und Orthostase-Test kann in ca. 50% die Ursache der Synkope gefunden werden.

Labor

Labordiagnostische Untersuchungen sollen nicht routinemässig veranlasst werden, sondern nur bei einem entsprechenden Verdacht. Hier kommen z.B. Hb. Na. K. Troponin, BNP, D-Dimer, CRP, BGA, evtl. Tox-Screen in Frage. Im Falle einer Hospitalisation kommt die «Eintritts-Routine» zur Anwendung.

Medikamente

Gefragt werden sollte nach kürzlichem Neubeginn oder Dosisanpassung eines Medikamentes, hier sind Substanzen mit (Interaktions-)Potential für ein QT-Verlängerung relevant. Weiters sollte nach den negativ dromo-/chronotropen Medikamenten (Betablocker) auch Orthostase begünstigenden Medikamenten (Nitrate, Diuretika, Quetiapin, Vasodilatantien, Sedativa) gefragt werden. Auch vermeintlich harmlose Medikation kann eine Synkope begünstigen (z.B. Betablocker in Augentropfen).

Risikostratifizierung

Da je nach Ursache der Synkope die Prognose ernst sein kann, ist bei der Erstbeurteilung eine Risikostratifizierung notwendig. Diesbezüglich gibt es viele Scores (z.B. Canadian Syncope Risk Score), die aber einer klinischen Einschätzung nicht überlegen sind.

Bei geringem Risiko sind keine weiteren Abklärungen nötig oder diese können ambulant durchgeführt werden. Bei hohem Risiko empfehlen wir eine Hospitalisation mit weiterer Überwachung und Diagnostik je nach vermuteter Ursache der Synkope.

Kriterien für die Risikostratifizierung

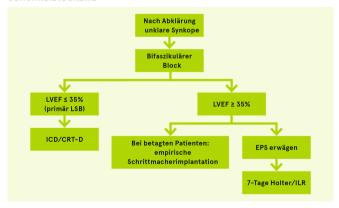
Anamnese / Jetziges Leiden		
Hohes Risiko	Tiefes Risiko	
Major	Typische Prodromi für Reflex-Synkope (z.B. Benommenheit, Wärmegefühl, Übelkeit, Schwitzen)	
Neue thorakale Missempfindungen, Atemnot, Bauchschmerzen oder Kopfweh	Nach einem unerwarteten widerlichen Anblick, Geräusch, Geruch oder Schmerz	
Synkope bei Anstrengung oder im Liegen	Nach langem Stehen oder in einem überfüllten, heissen Ort	
Plötzliches Herzklopfen gefolgt von der Synkope	Während oder nach dem Essen	
Minor (Hohes Risiko nur bei struktureller Herzkrankheit oder abnormem EKG)	Getriggert durch Husten, Miktion oder Stuhlgang	
Keine Warnsymptome oder kurze Prodromi (< 10Sek.)	Mit Kopfwendung oder Druck auf Carotissinus	
Familienanamnese mit plötzlichem Herztod in jungen Jahren	Aufstehen aus liegender, sitzender Position	
Synkope im Sitzen		

Persönliche Anamnese		
Hohes Risiko	Tiefes Risiko	
Major	Rezidiv. Synkopen seit Jahren ohne Änderung von Symptomen oder Begleit- umständen	
Schwere strukturelle oder koronare Herzkrankheit (Herzinsuffizienz, tiefe LVEF, St. nach Infarkt)	Fehlen einer strukturellen Herzkrankheit	

Klinische Untersuchung	
Hohes Risiko	Tiefes Risiko
Unerklärter systol. BD < 90 mmHg	Normale klinische Untersuchung
Hinweis auf gastrointestinale Blutung bei Rektaluntersuchung	
Bradykardie < 40/Min. (wach, ø Sportler)	
Unbekanntes Systolikum	

EKG	
Hohes Risiko	Tiefes Risiko
Nicht normales EKG	Normales EKG

Brugada-Syndrom Typ 1


Epsilon-Welle (Arrhythmogenic right ventricular dysplasia ARVD)

Eine rhythmogene Ursache der Synkope ist hoch wahrscheinlich bei folgenden EKG-Veränderungen:

- Persistierende Sinusbradykardie < 40/Min. oder Sinuspausen > 3
 Sek. bei wachen, nicht sportlichen Patienten
- AV-Block Typ Mobitz II oder AV-Block 3. Grades
- Alternierender Links- und Rechtsschenkelblock
- Kammertachykardie, Nicht-anhaltende Kammertachykardie oder schnelle, paroxysmale supraventrikuläre Tachykardie
- Nicht anhaltende polymorphe Kammertachykardie in Kombination mit langer oder kurzer (<360ms) QTc-Zeit
- · Schrittmacher- oder ICD-Dysfunktion mit Pausen
- Bifaszikulärer Block (Linksschenkelblock oder Rechtsschenkelblock mit LAHB/LPHB)

→ Sofortige Rhythmusüberwachung und Rücksprache mit kardiologischem Dienstarzt.

Algorithmus Vorgehen bei unklarer Synkope und bifaszikulärem Schenkelblockbild

Weitere Diagnostik

Carotis-Sinus-Massage (CSM)

Eine CSM wird bei allen Patienten (> 40-jährig) mit Synkopen vereinbar mit Reflexsynkopen – und ohne Hinweise auf eine relevante Atheromatose der Carotiden – zur Suche nach einem hypersensitiven Carotissinus-Syndrom empfohlen. Dabei wird der kardioinhibitorische vom vasodepressiven Typ unterschieden. Die CSM ist diagnostisch bei einer Asystolie von > 3 Sekunden und/oder einem BD-Abfall von > 50 mmHg und Reproduktion von Symptomen.

Ein hypersensitiver Carotissinus (\neq Carotissinus-Syndrom) wird bei älteren Patienten in bis zu 40% (auch ohne Symptome) gefunden.

Orthostase-Test

Beim Orthostase-Test wird der Blutdruck und Puls liegend, sofort nach dem Aufstehen und nach 3 Min. gemessen.

Ein Blutdruck-Abfall von \geq 20 mmHg systolisch, \geq 10 mmHg diastolisch oder ein Abfall des systolischen BD auf < 90 mmHg mit Symptomen weist eine orthostatische Hypotonie OH als Ursache der Synkope hin. Beim klassischen Schellong-Test (mit BD- und Puls-Messungen während 10 Min. Stehen) werden die verzögerte orthostatische Hypotonie (Blutdruckabfall erst nach 3 Min.) oder ein POTS (posturales Tachykardiesyndrom; Pulsanstieg \geq 30/Min. oder auf \geq 120/Min. innerhalb von 10 Min. ohne OH mit Symptomen), eher erfasst.

Der klinische Verdacht auf eine vasovagale (Synonym: reflektorische) Synkope muss nicht weiter abgeklärt werden, falls Synkopen selten auftreten und ohne ernsthafte Verletzungen ablaufen.

Kipptisch-Untersuchung (tilt table test)

Eine Kipptisch-Untersuchung soll gemäss Leitlinien bei Patienten mit Verdacht auf Reflex-Synkopen, OH (orthostatische Hypotonie), POTS (posturales Tachykardiesyndrom) oder PPS (psychogene Pseudosynkope) erwogen werden. Aufgrund der nur mässigen Spezifität, der oft

fehlenden Konsequenzen und des grossen Aufwands dieses Tests soll er nur bei Patienten mit rezidivierenden Synkopen erwogen werden.

Langzeit-EKG (Telemetrie, Holter, implantierbare Loop-Recorder)
Bei kardialen Hochrisikopatienten ist ein sofortiges, kontinuierliches
EKG-Monitoring (Telemetrie oder Intensivstation) notwendig.

Wird bei Patienten hohem Risiko, trotz umfassender Evaluation, keine Ursache der Synkope gefunden ist ein Loop Recorder indiziert. Bei Patienten ohne Kriterien für ein hohes Risiko wird bei rezidivierenden Synkopen ungeklärter Ursache (v.a. wenn ohne Prodromi und mit Verletzungsgefahr) ebenso eine zeitnahe Implantation eines Loop Recorders empfohlen.

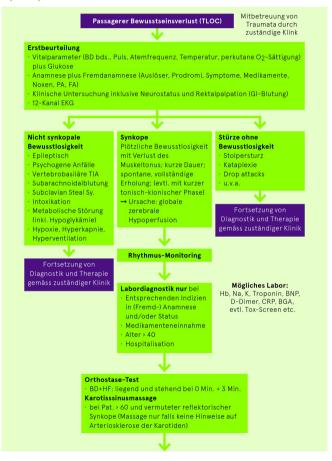
Echokardiografie

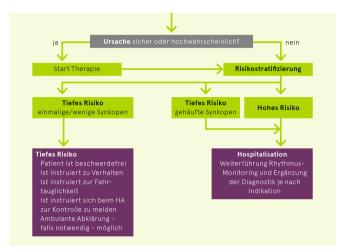
Bei Verdacht auf strukturelle kardiale Veränderungen als Ursache der Synkope ist eine Echokardiografie indiziert. Folgende Diagnosen können nachgewiesen oder ausgeschlossen werden: Aortenstenose, obstruktive kardiale Tumoren oder Thromben, Perikardtamponade, Aortendissektion. Einschätzung der LV-Funktion, Hinweise auf eine Koronare Herzkrankheit, eine pulmonale Hypertonie oder ein Cor pulmonale.

Bei Synkopen ist eine Echokardiografie nur indiziert, falls Indizien auf eine kardiale Genese hinweisen.

Elektrophysiologische Stimulation (EPS)

Indikation für eine EPS sind Patienten mit Synkopen und St. nach Myokardinfarkt oder myokardialen Narben, die nach den nicht invasiven Abklärungen unklar bleiben. Auch bei Synkopen nach plötzlichen, kurzen Palpitationen wird eine EPS empfohlen.


Spezifische weitere Diagnostik


Belastungs-EKG, 24h-BD-Profil, Funktionstests des autonomen Nervensystems, Doppler-Untersuchung der hirnzuführenden Gefässe, EEG, kraniozerebrale CT/MRI sind nur bei spezieller Fragestellung notwendig.

Ohne fokale neurologische Symptome oder Befunde ist eine Synkope **keine** Indikation für eine Doppleruntersuchung der hirnzuführenden

Gefässe oder für eine Bildgebung mittels CT oder MRI.

Synkope auf der Notfallstation

Vgl. Risikostratifizierung Seite 155

Fahreignung nach Synkope

Je nach Ursache der Synkope kann es zu Einschränkung hinsichtlich der Fahrtauglichkeit kommen (Kapitel Fahreignungbeurteilung Seite 327).

Quellen/Links

- ESC Leitlinien Synkope: https://doi.org/10.1093/eurheartj/ehy037
- ACC/AHA/HRS Leitlinien Synkope: https://www.ahajournals.org/doi/full/10.1161/CIR.0000000000000499
- Synkopenrichtlinien: https://medicalforum.ch/de/detail/doi/smf.2021.08831
- Canadian Syncope Risk Score: https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2763181score

Dr. David Hörburger, Dr. Florian Franzeck, Dr. Jörg Scheler, Dr. Jochen Vehoff

Ischämischer Schlaganfall und Transitorische ischämische Attacke (TIA)

Prähospitalisationsphase

Patienten müssen an Ort und Stelle und ohne Zeitverlust klinisch mithilfe geeigneter Scores (mit hoher Sensitivität) eingeschätzt und im Hinblick auf eine akute Intervention gescreent werden. Für Laien eignet sich der FAST-Test gut.

FAST - Face, Arm, Speech (Abnormalities) and Telephone

	Ja	Nein
1. Gesichtslähmung (F ace)		
2. Einseitige Armschwäche (A rm)		
3. Abnorme Sprache (S peech)		
4. Telefonische Benachrichtigung Notfalldienst (T elephone)		

Grundsätzlich eignet sich das Kriterium eines akut aufgetretenen fokalen neurologischen Defizits (u.a. Sprache, Motorik, Sehstörung, schwerer Schwindel) gut für den Entscheid, ob ein Schlaganfall vorliegt. Aufgrund der Behandlungsoption der endovaskulären Therapie, welche nur in Stroke Centers verfügbar ist, sollte durch den Rettungsdienst auch die Wahrscheinlichkeit eines proximalen Gefässverschlusses (LVO = large vessel occlusion) beurteilt werden. Hierfür schlägt die Schweiz. Hirnschlaggesellschaft die RACE-Scale als Instrument vor, die in diesem Setting validiert ist (siehe Richtlinien Neurologie KSSG www.guidelines.ch).

Nach der initialen Einschätzung

Bei Verdacht auf Schlaganfall niederschwellig zuweisen, Zielspital anrufen, das einen Akutbehandlungsauftrag im Rahmen eines Schlaganfallnetzwerkes hat (**KSSG: 071 494 11 11**, diensthabenden Neurologen verlangen, interne Nummer **9420**; Spital Grabs: Dienstarzt Medizin 081 772 52 20) und als Schlaganfall-Notfall anmelden. Patiententransport via Sanitätsnotruf 144 oder REGA 1414 anfordern. Fahrt ins Spital mit Sondersignal bei Symptombeginn innerhalb der letzten 24 Stunden.

- Bei einer Entfernung des Ereignisses zum Stroke Center < 20 Minuten sollte das Stroke Center direkt angefahren werden, unabhängig von der Wahrscheinlichkeit eines LVO.
- Falls der Weg zur Stroke Unit kürzer ist als zum Stroke Center, scheint das Drip & Ship Konzept (systemische Thrombolyse im nächstgelegenen Spital mit Behandlungsauftrag, sekundärer Transport bei LVO ins Zentrum) ab einer Transportzeit von > 20 Minuten zwischen den beiden Institutionen Sinn zu ergeben. Die Zeit in der erstversorgenden Stroke Unit von Eintritt bis Weiterverlegung («door-in-to-door-out time» = «DIDO time») muss so kurz wie möglich gehalten werden (Ziel: «door-to-needle»: 30 Min., «turnaround» 20 Min: = «DIDO» Ziel 50 min; max. 60 Minuten), zusätzlich ist auch eine entsprechende Organisation im Stroke Center notwendig, um die «door-to-groin-puncture time» so tief wie möglich zu halten (Ziel: 30 Minuten; max. 60 Minuten).
- Fahrtwege weg vom Stroke Center und hin zu einer Stroke Unit von mehr als 10 min. sollten vermieden werden, da dieser Weg bei Verlegung ins Stroke Center nochmals gemacht werden muss.

Massnahmen beschränken

- Sicherung der Vitalfunktionen
- · Glukosegabe bei Hypoglykämie
- Wenn möglich, grosslumigen venösen Zugang kubital anlegen ≤ 17
 G (weiss, grau oder orange)

Unterlassen

- Keine Antithrombotika (z.B. Aspirin, Heparin und ähnliche) geben (ischämischer und hämorrhagischer Infarkt können initial klinisch nicht unterschieden werden)
- In der Regel keine antihypertensive Behandlung (nur wenn > 220 mmHg oder Organmanifestationen gemäss interner Algorithmen

Beachten

- Schlaganfälle können auch im Alter < 45 Jahre auftreten, selbst im Kindesalter
- Keine Vorabklärungen in Institutionen durchführen, die keinen

- Akutbehandlungsauftrag haben.
- · Wenn möglich Begleitperson aus der Familie für Fremdanamnese und allfällig notwendige Entscheidungsfindung mitschicken oder zumindest eine Telefonnummer für Rückfragen notieren.
- Wenn möglich den Ereigniszeitpunkt eruieren (oder den zuletzt symptomfreien Zeitpunkt).

Akutbehandlung des ischämischen Schlaganfalles

Indikationskriterien für eine intravenöse Thrombolyse oder eine endovaskuläre Revaskularisation

- Klinische Diagnose eines ischämischen Schlaganfalls
- Ausschluss einer akuten intrakraniellen Blutung im CT oder MRI
- Behinderndes Defizit zum Zeitpunkt der Untersuchung (in der Regel: NIHSS-Score ≥ 4 Punkte) u/o Aphasie u/o Hemianopsie
- Intervall zwischen Symptom- und Therapiebeginn 0-4.5 Std. für die intravenöse und 0-8 Std. für die endovaskuläre Behandlung
- Bei Symptombeginn < 24 Std. (inclusive «last seen well» < 24 Std.), Nachweis eines proximalen Gefässverschlusses sowie vorhandener Penumbra (CT- oder MRI basiert): endovaskuläre Behandlung
- Bei Wake-up-Konstellation oder unklarem zeitlichen Beginn ohne Nachweis eines proximalen Gefässverschlusses, aber mit vorhandener Penumbra (MRI-/CT basiert) intravenöse Thrombolyse innerhalb von 9 Std. vom zuletzt symptomfreien Zeitpunkt oder Mittelpunkt zwischen Zubettgehen und Entdecken der Symptome

Kontraindikationen für eine intravenöse oder intraarterielle Thrombolyse können unter www.guidelines.ch nachgesehen werden und werden in der behandelnden Klinik überprüft. Viele dieser Kriterien sind relativ. Das Ziel sollte in jedem Fall sein, möglichst eine Behandlung durchzuführen, sofern nicht klare Gründe dagegen sprechen.

Merkpunkte

- Die systemische Thrombolyse (mit rt-PA) verbessert das Outcome beim akuten ischämischen Hirninfarkt.
- Bei proximalen Gefässverschlüssen bringt die Kombination der systemischen Thrombolyse mit einer endovaskulären Revaskularisation (Bridging) einen klaren Zusatznutzen.
- Ob allein oder in Kombination ist der Nutzen der Interventionen stark zeitabhängig. Zeitvorgaben: «Door to needle»: 30 Min. bzw. «Door to groin puncture»: 60 Min.
- Die Einnahme von Aspirin und/oder Clopidogrel kontraindizieren die Thrombolyse nicht. Bei Kombination beider Substanzen muss aber mit einer erhöhten Blutungsrate gerechnet werden.
- Bei therapeutischer, oraler Antikoagulation mit einem Vit. K-Antagonisten (INR > 1.7) oder einem NOAK kann bei akutem Verschluss eines proximalen Gefässes mittels endovaskulärer Revaskularisation behandelt werden.
- Ein fortgeschrittenes Alter (> 80 Jahre) ist kein Ausschlusskriterium für eine Behandlung.
- Nach Thrombolyse/endovaskulärer Revaskularisation: keine Gabe von Antiaggregantien/Antikoagulantien während 24 Std. bis zur Durchführung einer zerebralen Bildgebung zum Ausschluss einer relevanten Einblutung. Ausnahmen sind besondere Umstände, wie eine Dissektion, akutes Stenting extra- und intrakraniell (individueller Entscheid).
- Falls keine Thrombolyse möglich ist, soll die mechanische Thrombektomie als alleinige Akuttherapie erwogen werden.
- Wenn keine Thrombolyse und keine endovaskuläre Revaskularisation möglich ist (Kontraindikation, Zeitfenster überschritten etc.)
 Gabe von 250 mg Aspirin iv (alternativ 300 mg po) und Thromboseprophylaxe mit niedermolekularem Heparin sc, nach der Durchführung einer zerebralen Bildgebung zum Blutungsausschluss.
- Bestehen Hinweise auf eine kardiale Embolie wird 24 Std. postinterventionell mit intravenösem Heparin begonnen, initial mit 10'000 E/24h. Im Verlauf erfolgt abhängig von der Infarktgrösse eine therapeutische Antikoagulation. Ein früherer Beginn wird aktuell in mehreren grossen Studien untersucht und erscheint

- nach ersten Ergebnissen sicher zu sein.
- Die akute (revaskularisierende) Schlaganfallakutbehandlung (mechanische Thrombektomie/systemische Thrombolyse) ist bis 24 Std. nach Symptombeginn respektive bei Wake up stroke möglich. Die Triage muss in einem dafür qualifizierten Spital (Stroke Unit. Stroke Center) erfolgen.
- Eine signifikante neurologische Besserung mit sekundärer Verschlechterung ist in der Akutsituation möglich, weshalb eine kontinuierliche Überwachung über mindestens 24 Std. indiziert ist.

Probleme in der akuten und postakuten Phase

In der akuten bzw. postakuten Phase können spezifische neurologische und internistische Probleme zu lebensbedrohlichen Komplikationen führen oder durch Interaktion mit der zerebrovaskulären Reserve das neurologische Outcome beeinträchtigen. Entsprechend ist die Betreuung des akuten Schlaganfallpatienten durch ein erfahrenes Behandlungsteam (Stroke Unit) mit einem besseren Outcome assoziiert

Dysphagie nach Schlaganfall

- Schluckstörungen nach Schlaganfall sind häufig (bis 50%).
- Wegen des Aspirationsrisikos und des Risikos der Mangelernährung muss systematisch nach einer Schluckstörung gesucht (Dysphagiescreening) und allenfalls therapeutische Schritte eingeleitet werden. Nähere Informationen unter: www.guidelines.ch

Probleme, welche die zerebrovaskuläre Reserve beeinträchtigen können

- Hochgradige Stenose der A. carotis interna
- Arterielle Hypertonie und Hypotonie
- Tachy- und Bradyarrhythmie, meist i.R. eines Vorhofflimmerns

^{1.} Zeit bis Beginn OAK: TIA: sofort; kleiner Infarkt: 3-5 Tage; mittelgrosser Infarkt: 5-7 Tage; grosser Infarkt: 14 Tage

Masseneffekt durch malignes Hirnödem²

Indikation für frühzeitige (24–48 Std.) parieto-temporale Schädeldekompression bei malignem Mediainfarkt:

- · Alter < 60 (-70) Jahre
- · Symptombeginn vor < 24 Std. (in Ausnahmefällen auch später)
- Im CT oder MRI Infarktzeichen, die mindestens die H\u00e4lfte des Mediastromgebietes umfassen
- · Mutmasslicher Wille des Patienten für ein aktives Vorgehen
- · Keine Kontraindikationen für eine Operation
- Ein erfolgloser Rekanalisationsversuch bzw. erfolglose Thrombolyse ist ein weiteres Argument für eine Hemikraniektomie

Indikation für okzipitale Schädeldekompression bei Kleinhirninfarkt, meist ergänzt durch externe Ventrikeldrainage (EVD):

- · Zeichen einer progressiven Druckerhöhung im Hirnstammbereich
- · Radiologisch sichtbare Raumforderung
- · Mutmasslicher Wille des Patienten für ein aktives Vorgehen
- · Keine Kontraindikationen für eine Operation

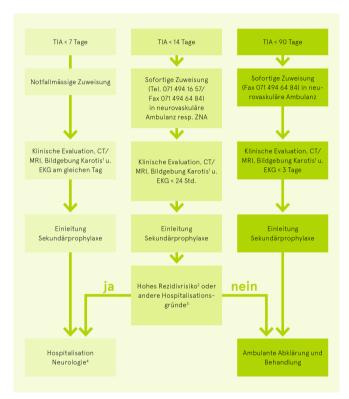
Seltene Probleme

- · Zentrale Apnoe und Hypopnoe bei medullären Infarkten
- Behandlungsbedürftiges obstruktives Schlafapnoesyndrom

Empfehlungen der schweizerischen Arbeitsgruppe: International Journal of Stroke 2009;
 4:218–223

Internistische Probleme in der akuten und postakuten Phase

- Bei Temp. > 38.0 °C (tympanal) antipyretische Therapie (physikalisch, medikamentös [Paracetamol oder Metamizol]) einsetzen. Fokussuche (Anamnese, Blutkulturen, Thorax-Röntgenbild [Aspirationspneumonie?], Urinstatus), damit bei bakteriellem Infekt eine gezielte antibiotische Therapie zeitnah begonnen werden kann.
- Grundinfusion NaCl 0.9% oder Ringerlactat, Hypotone Infusionslösungen wie z.B. Glukose 5% vermeiden (Cave: Hirnödem)
- Thromboembolieprophylaxe: bei eingeschränkter Mobilität (und fehlenden Kontraindikationen) Gabe von niedermolekularem Heparin sc in prophylaktischer Dosierung. Bei Kontraindikationen intermittierende pneumatische Kompression der Beine.
- Blutzucker: engmaschige Kontrolle (Blutzuckertagesprofil) und Nüchtern-Werte zwischen 5.5 und 10.0 mmol/Lanstreben
- Rasche Wiederaufnahme der enteralen Ernährung (bei Thrombolyse frühestens am nächsten Tag), bei Dysphagie mittels nasogastraler Sonde. Parenterale Ernährung nur in Ausnahmefällen.
- Sauerstoffgabe: Sauerstoffsättigungs-Ziel > 92%.
- Blutdruck: Vor Beginn der Thrombolyse sind Werte von 185/110 mmHg, in den ersten 24 Stunden danach ≤ 180/105 mmHg anzustreben, aber schnelle Blutdruckabfälle um > 20% des Ausgangswertes zu vermeiden. Ohne medikamentöse oder mechanische Rekanalisation wird eine akute Behandlungsbedürftigkeit erst bei persistierenden Werten > 200/120 mmHg resp. Organmanifestationen (kardiale Ischämie, Herzinsuffzienz, Aortendissektion, hypertensive Enzephalopathie, Eklampsie) angenommen, Bei LVO, Blutdruck vor Wiedereröffnung über 140/90 mmHg halten, anschliessend darunter. Vorsichtiger (Wieder-) Beginn der antihypertensiven Therapie nach 24-72 Std.
- Die Blutdruckuntergrenze richtet sich nach dem klinischen Bild, als Faustregel gilt > 120 mmHg systolisch. Symptomatische Hypotonien primär mit Volumengabe (NaCl 0.9% iv) behandeln.


Transitorische Ischämische Attacke (TIA)

Die transitorische ischämische Attacke (TIA) wird als neurologischer Notfall angesehen, da das Risiko, einen schweren Schlaganfall zu erleiden innerhalb der ersten 48 Std. bei bis zu 12% liegt. Deshalb müssen unter den TIA-Patienten die Hochrisiko-Patienten rasch identifiziert werden. Als solche gelten alle mit einem ABCD³- resp. ABCD³-I-Score von 4 Punkten und mehr. Dabei beinhaltet der bessere und bei uns angewendete ABCD³-I-Score zusätzlich den möglichen Nachweis einer ipsilateralen Stenose von mehr als 50% (CTA oder Doppler-/Duplexsonografie) und einer DWI-Läsion. Abhängig von der Einschätzung des Rezidivrisikos und der Latenz nach der TIA, der Risikokonstellation und den lokal verfügbaren Ressourcen soll der Entscheid für eine rasche ambulante oder stationäre Abklärung gefällt werden. Durch eine rasche Abklärung und Behandlung können ca. 80% der Rezidive verhindert werden

Risikoeinschätzung anhand des ABCD³- und ABCD³-I-Score

		ABCD ³ -Score	ABCD ³ -I- Score
Alter	≥ 60 Jahre	1	1
Blutdruck	≥ 140/90 mmHg	1	1
Klinische Faktoren	Sprachstörung ohne bzw. mit halbseitige Schwäche	1 2	1 2
Dauer	10-59 Minuten ≥ 60 Minuten	1 2	1 2
Diabetes mellitus		1	1
Vorangegangene TIA in den letzten 7 Tagen		1	2
Ipsilaterale ≥ 50%ige Stenose der A. carotis interna		NA	2
DWI-Läsion im MRT		NA	2
Summe		0-9	0-13

Wenn die Kriterien nicht zutreffen, werden 0 Punkte vergeben, NA = nicht zutreffend

¹ CT-Angio (extra- und intrakraniell) oder Duplexsonografie der hirnzuführenden Gefässe (extra- und transkraniell). Notfall-MRI innerhalb von 24 Std., nicht zwingend am gleichen Tag und nur, wenn ABCD3-I-Score 0-3

² ABCD³ resp. ABCD³-I-Score > 4 Punkte

³ Co-Morbiditäten beachten wie Herzinsuffizienz, instabile Angina pectoris

⁴ Der Entscheid, ob der Patient auf die NIPS aufgenommen wird, kann der entsprechenden Indikationsliste entnommen werden. Bei TIAs sind dies: ABCD3 resp. ABCD3-I-Score > 4 Punkte, Vorhofflimmern, andere schwere Co-Morbiditäten

Sekundärprävention nach Schlaganfall/TIA

Pharmakotherapie

Antithrombotische Behandlung

- · In der Regel Aspirin 300 mg/Tag für 7 Tage, danach 100 mg/Tag
- Bei TIA mit mindestens mässigem Risiko für einen ischämischen Hirninfarkt (ABCD2-Score ≥ 4 Punkte) oder leichtem Schlaganfall (NIHSS ≤ 5) vor nicht mehr als 24h, vorübergehend (3 Wochen) duale Thrombozytenaggregationshemmung mit Aspirin 100 mg/Tag + Clopidogrel 75 mg/Tag (initiale Aufsättigungsdosis Clopidogrel: 300mg: nicht nach Akuttherapie)
- In ausgewählten Fällen mit sehr hohem Schlaganfallrezidivrisiko (hochgradige intra-/extrakranielle Stenose, ulzerierte Plaque, positives Embolie-Monitoring in der Dopplersonografie unter Aspirin): Aspirin 100 mg/Tag + Clopidogrel 75 mg/Tag (initiale Aufsättigungsdosis Clopidogrel 300mg) für maximal 3 Monate
- Extrakranielle Gefässdissektion (3–6 Monate): Aspirin 100 mg/Tag oder orale Antikoagulation mit Phenprocoumon (Marcoumar [Ziel-INR 2–3])
- Eine doppelte Thrombozytenaggregationshemmung von > 3 Monaten ist aus rein neurologischer Sicht nicht indiziert, da das Blutungsrisiko den sekundärprophylaktischen Nutzen überwiegt.
- Bei Therapieversagen Wirksamkeit der Thrombozytenaggregationshemmer durch den Multiplate-Test in vitro pr
 üfen.

Behandlung mit Antikoagulantien

Indikation zur oralen Antikoagulation (OAK)³:

- · Kardiale Emboliequelle:
 - · Vorhofflimmern: siehe entsprechendes Kapitel Seite 247
 - «Klassifizierung valvulär vs. nicht-valvulär»⁴ siehe <u>Seite 247</u>
- 3. Bei akutem Territorialinfarkt volle Antikoagulation nur in Ausnahmefällen (Gefässdissektion, Sinus-/Hirnvenenthrombose, linksventr. Thrombus, flottierender Thrombus in der ACI) zu erwägen. Ansonsten in den ersten 7 Tagen keine therapeutische Verlängerung der PTT/PiCT anstreben.

- Nicht-valvuläres Vorhofflimmern: gemäss «CHA2DS2-VASc Score» Seite 251 und «HAS-BLED Score» Seite 253
- Bei Vorhofflimmern und Koronarer Herzkrankheit: siehe «Vorgehen bei Indikation für Thrombozytenaggregationshemmer und OAK» Seite 254
- Mechanische und biologische Herzklappen⁵: siehe Kapitel Valvuläre Herzerkrankung «Follow-up» Seite 310.
- Linksventrikulärer Thrombus: Vitamin K-Antagonist (i.d.R. Phenprocoumon [Marcoumar] Ziel-INR: 2-3) oder ggf. NOAK für mind. 3 Monate⁶
- Akutes Koronarsyndrom mit Herzwandaneurysma mit/ohne Nachweis eines linksventr. Thrombus: siehe Kapitel ACS «Antithrombotische Therapie bei PCI und Indikation einer OAK» Seite 105 in Rücksprache mit dem behandelnden Kardiologen
- Sinus-/Hirnvenenthrombose: Vitamin K-Antagonist (i.d.R. Phenprocoumon [Marcoumar] mit Ziel-INR: 2-3) für 3-6 Monate

Empfehlungen für die Behandlung der arteriellen Hypertonie

- Blutdruck-Ziel < 130/80 mmHg niedriger, falls gut toleriert.
- ACE-Hemmer in Kombination mit thiazidähnlichen Diuretika sind erste Wahl. Alternativ Kalziumantagonisten und Angiotensin-Rezeptor-Blocker, Keine Kombination von ACE-Hemmern, Angiotensin-Rezeptor-Blocker und Reninhemmern. Betablocker gehören in dieser Situation nicht zu den Antihypertensiva der ersten Wahl, Die Auswahl des Medikamentes muss den Begleiterkrankungen (KHK, PAVK, D.m., Niereninsuffizienz) angepasst werden.
- Gewichtsreduktion, körperliches Training, mediterrane Ernährung und Einschränkung des Alkoholkonsums helfen bei der Blutdrucksenkung und sollten die medikamentöse Therapie ergänzen.

NOAKs sind bei valvulärem Vorhofflimmern kontraindiziert.

^{5.} NOAKs sind bei mechanischen Klappen kontraindiziert. Bei ischämischem Schlaganfall/TIA trotz adäquater OAK, Zugabe von 100 mg Aspirin/Tag, falls kein hohes Blutungsrisiko vorliegt.

^{6.} Dauer abhängig vom echokardiografischen Verlauf

Empfehlungen für die medikamentöse Lipidsenkung

 Bei Patienten mit ischämischem Hirninfarkt ist eine Therapie mit einem potenten Lipidsenker (Statin) unabhängig von den Ausgangswerten indiziert. Zielwert LDL < 1.8 mmol/l (< 1.4 mmol/l bei Makroangiopathie)

Hochgradige Karotisstenose

- Bei hochgradigen, symptomatischen Karotisstenosen (> 70% [distaler Stenosegrad/NASCET]) ist ein Stenting oder eine Endarteriektomie indiziert.
- Der Nutzen der invasiven Therapie nimmt mit progredientem Stenosegrad zu. Er ist geringer bei einem Stenosegrad zwischen 50 und 70%, bei Frauen und wenn der Eingriff mehr als 12. Wochen nach dem Ereignis durchgeführt wird.
- Der Zeitraum zwischen Ereignis und invasiver Therapie sollte mit
 Thrombozytenaggregationshemmern überbrückt werden. Ist eine
 Stenose unter einem Thrombozytenaggregationshemmer symptomatisch geworden, empfiehlt sich die Kombination von Aspirin 100
 mg/Tag mit Clopidogrel 75 mg/Tag bis zur Operation. Danach
 Aspirin 100 mg/Tag. Zudem sollte bis zum Eingriff ein hochpotentes und hochdosiertes Statin (z.B. Atorvastatin 80 mg/Tag) verabreicht werden. Wird primär ein Stenting erwogen, soll mindestens
 eine Woche vorher eine Kombination von Aspirin 100 mg/Tag mit
 Clopidogrel 75 mg/Tag durchgeführt und das Ansprechen 1 Tag vor
 dem Eingriff mittels Multiplate-Tests überprüft werden.
- Die Karotisangioplastie mit Stenteinlage hat im Vergleich zur operativen Therapie in Bezug auf das periprozedurale Risiko bei der Behandlung symptomatischer Karotisstenosen ein leicht erhöhtes Kurzzeitrisiko (insbesondere bei Patienten > 70 Jahre).
- Bei unter 70-Jährigen ist das periprozedurale Risiko des Stentings vergleichbar mit demienigen der Endarterektomie.
- Die Langzeitergebnisse (10 Jahre) bezüglich Schlaganfall und Restenoserate sind für beide Verfahren vergleichbar.
- Die Karotisendarterektomie ist derzeit die Therapie der ersten Wahl bei Patienten über 70 Jahre. Bis 70 Jahre sind beide Verfah-

ren als gleichwertig einzustufen. Ein Stenting ist Therapie der Wahl bei Patienten mit Rezidivstenose nach TEA, hochgradiger Stenose nach Strahlentherapie, kontralateralem Verschluss oder hoch sitzender Bifurkation und einer chirurgischen Intervention schwer zugänglichen Stenose sowie bei Hochrisikopatienten.

Persistierendes Foramen ovale, PFO

Entscheidungsbaum PFO-Verschluss

*Sofern technisch möglich und Einwilligung («shared decision making») des Patienten vorliegend; immer medikamentöse Sekundärprophylaxe (Thrombozytenaggregationshemmer); **ASCOD = Phänotypisierung des ischämischen Schlaganfalles (A: Makroangiopathie, S: Mikroangiopathie, C: kardiale Pathologie, O: andere Ursachen, D: Dissektion (Amarenco, et al. Cerebrovasc Dis 2013:36:1-5)

PFO-Verschluss

Die Empfehlung für/gegen einen PFO-Verschluss ist stets ein individueller Entscheid im interdisziplinären PFO-Kolloquium und nach sorgfältiger ätiologischer Abklärung:

- MRI Neurokranium: Infarktmuster embolisch versus lakunär?
- Darstellung der hirnversorgenden Gefässe (CT-Angiografie und/ oder MR-Angiografie und/oder Doppler/Duplexsonografie der extrakraniellen hirnversorgenden Gefässe)

- Transthorakale Echokardiografie: Suche nach kardialer Emboliequelle. Insb. bei < 60 Jährigen: Frage nach Shunt / PFO, bei unklarem Befund transkranieller Doppler («Bubble-Test»)
- 7d-Holter-EKG (30d-Holter bzw. implantierbarer Rhythmusrecorder bei entsprechendem Risikoprofil siehe Richtlinien Neurologie KSSG www.guidelines.ch)

Der RoPE-Score erlaubt es, bei Patienten mit ätiologisch ungeklärtem Schlaganfall und PFO die Wahrscheinlichkeit eines inzidentellen versus eines pathogenen PFO abzuschätzen. Grundsätzlich gilt, dass ein RoPE-Score von ≥ 6 auf ein pathogenes PFO hinweisend ist.

RoPE-Score	Punkte
Keine arterielle Hypertonie	1
Kein Diabetes	1
Kein(e) Stroke/TIA in der Vorgeschichte	1
Nichtraucher	1
Kortikaler Infarkt (CT/MRI)	1
Alter 18-29 Jahre	5
Alter 30-39 Jahre	4
Alter 40-49 Jahre	3
Alter 50-59 Jahre	2
Alter 60-69 Jahre	1
Alter ≥ 70 Jahre	0
Total	10

Kent, et al. Trials 2011;12:185; Kent, et al. Neurology 2013;81:619-625.

Folgende Kriterien in der Echokardiografie (transthorakale und öesophageale Untersuchung) sprechen für eine Hochrisikokonstellation («Hochrisiko-PFO»)

- Hypermobiles interatriales Septum / Vorhofseptum-Aneurysma
- Grosser Rechts-Links-Shunt (Übertritt > 30 Microbubbles innerhalb von 3 Herzzyklen)
- PFO-Durchmesser > 2 mm
- Ausgeprägte Eustachische Klappe oder Chiari-Netzwerk

Im Falle eines Rezidivs ist eine erneute ätiologische Abklärung indiziert.

Medikamentöse Behandlung nach interventionellem PFO-Verschluss mittels Device

- Vaskuläre Risikofaktoren sind unabhängig von einem etwaigen PFO-Verschluss gemäss der üblichen Risikostratifizierung zu therapieren.
- · Eine Thrombozytenaggregationshemmung ist in der Regel unabhängig vom Entscheid für einen PFO-Verschluss dauerhaft indiziert (als Einzelfallentscheid ggf. alternativ OAK (NOAK), insb. wenn kein Verschluss und/oder bei Rezidiv)
- Nach einem PFO-Verschluss bedarf es einer mindestens dreimonatigen dualen Thrombozytenaggregationshemmung.
- Bei Verschluss mittels Device ist eine Endokarditis-Prophylaxe (orange) für 6 Monate nach PFO-Verschluss zwingend indiziert.

Periinterventionelles Management bei Patienten nach ischämischem Schlaganfall unter oraler Antikoagulation (OAK)

Siehe Kapitel «Periinterventionelles Management unter gerinnungshemmender Medikation» Seite 85

^{7.} Prozedere wird im KSSG im Rahmen des interdisziplinären PFO-Kolloquiums festgelegt

Quellen/Links

- www.strokeunit.kssg.ch
- www.guidelines.ch (Richtlinien Ostschweizer Schlaganfallnetzwerk)
- www.neurovasc.ch
- · www.eso-stroke.org
- https://www.awmf.org/fachgesellschaften/deutsche-schlaganfallgesellschaft-e-v-dsg
- www.stroke.org

Dr. Jochen Vehoff

PD Dr. Georg Kägi

Dr. Sebastian Kopp

Dr. Gian-Reto Kleger

Dr. Flke Schmidt

Intrakranielle Blutung

Ätiologie

Die häufigsten Ursachen von nicht-traumatischen Hirnblutungen sind die hypertensive Blutung (Stammganglienblutungen) oder Blutungen bedingt durch Aneurysmen (Subarachnoidalblutung) resp. vaskuläre Malformationen. Die Lokalisation der Blutung liefert bereits wichtige Hinweise auf die zugrunde liegende Ätiologie.

Chronische arterielle Hypertonie (typisch: hypertensive Stammganglienblutung oder Thalamusblutung mit Ventrikeleinbruch)

Aneurysmen

Vaskuläre Malformationen

Gefässwandschäden bei Amyloidangiopathie (v.a. bei älteren Patienten und infektiösen Erkrankungen)

Blutungsdiathese

- Antithrombotika
- Fibrinolytika
- · Thrombozytopenie/Thrombozytopathie
- · Hämophilie
- · Leukämie

Drogen

Sinus-/Hirnvenenthrombosen

Schädel-Hirn-Trauma

Metastase/Tumor

Ischämischer Hirninfarkt mit sekundärer Einblutung

Diagnostik

Da die Hirnblutung klinisch nicht sicher von einem ischämischen Hirninfarkt unterschieden werden kann, weicht die initiale Diagnostik nicht von derienigen des ischämischen Hirninfarktes ab.

Diagnostik: natives CT und CT-Angiografie. Bei atypischer Blutung (thalamisch, lobär) sollte immer auch die Möglichkeit einer Stauungsblutung bei Sinus-/Hirnvenenthrombose in Betracht gezogen werden.

Entsprechend sollte die initiale Abklärung durch eine CT-Venografie ergänzt werden. Die CT-Angiografie liefert wertvolle Informationen über die Ursache (Aneurysma, AV-Malformation), aber auch über das weitere Nachblutungsrisiko (Spot-Sign).¹

Da sich die Hirnblutung typischerweise in den ersten 24 Std. vergrössert, empfiehlt sich eine Verlaufsbildgebung nach diesem Zeitintervall.

Bei Lobärblutungen wird im Verlauf der ersten Woche die Abklärung durch eine Schädel-MRI, inkl. Hämosiderin-sensitive Sequenzen und der Frage nach Amyloidangiopathie, ergänzt. Je nach klinischer Fragestellung sollte nach Resorption der Blutung nach 3 Monaten eine Verlaufs-MRI erfolgen, v.a. mit der Frage nach Kavernom oder sonstigen parenchymatösen Blutungsquellen.

Allgemeine, konservative Massnahmen

- Intensivmedizinische Überwachung auf NIPS, CHIPS oder MIPS in Abhängigkeit von der neurologischen Symptomatik und den Vitalparametern; Zu beachten ist, dass die Kontrolle der Herz-Kreislauf-Parameter in den ersten 48-72 Std. das Outcome verbessert.
- · Lagerung: 30° Oberkörperhochlagerung
- Arteriellen Blutdruck senken: rasche (innerhalb 1 Std.) Blutdrucksenkung auf systolische Werte zwischen 130 und 150mmHg (Zielblutdruck 140 mmHg). Bei Patienten, die intubiert und/oder einem neurochirurgischen Eingriff zugeführt werden den blutdrucksenkenden Effekt der Anästhetika mitberücksichtigen.
- Andere mögliche Ursachen einer Blutdrucksteigerung beheben (Schmerzen, Harnverhalt usw.)
- · Prophylaxe tiefer Beinvenenthrombosen/Lungenembolien:
 - · Pneumatische Kompressionstherapie
 - Frühzeitige (ab Tag 2) Therapie (UFH/NMH) in prophylaktischer Dosierung, Kontrolle der PiCT bzw. des Anti-Xa-Spiegels in Erwägung ziehen

^{1.} Indikator für Nachblutungsrisiko: Demchuk AM (et al.). Lancet Neurol 2012;11:307-14

- Bewusstseinsgestörte Patienten (GCS < 9) und/oder bei Schluckstörungen: Intubation, ggf. Hirndrucksonde (MIPS/CHIPS)
- Medikamentöse, nicht-operative Hirndruckbehandlung bei klinischer Verschlechterung im Zusammenhang mit zunehmendem Hirnödem: Mannitol, hypertone NaCl-Lösung und kurzzeitige Hyperventilation
- Bei Auftreten epileptischer Anfälle medikamentöse antikonvulsive Therapie in Erwägung ziehen
- Frühe Mobilisation nach 24 Std. bei stabiler Blutung und fehlendem Hinweis auf erhöhten intrakraniellen Druck

Hämostasiologische Massnahmen

Hintergrund: Antikoagulantien-Blutungen sind mit einem grösseren Blutungsvolumen² und einem schlechteren Outcome³ assoziiert: Unklar ist. ob das Outcome relevant durch eine schnelle Antagonisierung verbessert werden kann 4

- Bei spontanen intrazerebralen Blutungen sind keine hämostasiologischen Massnahmen indiziert.
- Management von intrazerebralen Blutungen unter Antikoagulantien: Vorgehen gemäss www.guidelines.ch und siehe Grafik «Vorgehen bei lebensbedrohlichen Blutungen unter NOAK» Seite 94

Chirurgische Massnahmen

Intrazerebrale Blutungen erfordern in Bezug auf die neurochirurgischen Behandlungsoptionen wegen der Vielzahl der potenziell zugrunde liegenden Ursachen eine differenzierte Betrachtung. Die Behandlungsstrategie ist abhängig von der neurologischen Symptomatik und Prognose der Patienten. Bei spontaner, nicht-aneurysmatischer Hirnblutung ist die Prognose im Wesentlichen vom Glasgow Coma Scale. dem Blutvolumen, der intraventrikulären Hämorrhagie, der Blutungs-

^{2.} Flaherty ML, Tao H, Haverbusch M (et al.). Neurology 2008;71:1084-1089

^{3.} Cucchiara B, Messe S, Sansing L, (et al.). Stroke 2008;39:2993-2996

^{4.} Dowlatshahi D, Butcher KS, Asdaghi N (et al.). Stroke 2012;43:1812-1817

lokalisation und dem Alter des Patienten abhängig.⁵ Hirnblutungen im Rahmen einer zerebralen Gefässmissbildung (Aneurysma, AV-Malformation) erfordern in der Regel eine neurochirurgische und/oder neuroradiologische Intervention mit kompletter Ausschaltung der Blutungsquelle.

Aneurysmatische Subarachnoidalblutung

Die aneurysmatische Subarachnoidalblutung in Folge eines rupturierten intrakraniellen Aneurysma erfordert eine zeitnahe Ausschaltung der Blutungsquelle mittels mikrochirugischem Clipping oder endovaskulärem Coiling. Somit kann das Risiko einer potenziell lebensbedrohlichen Nachblutung verhindert werden. Die weitere Behandlung erfolgt auf der chirurgischen Intensivstation (CHIPS) mit besonderem Fokus auf die frühzeitige Diagnostik und Therapie einer sekundären neurologischen Verschlechterung (z.B. im Rahmen von zerebralen Vasospasmen).

Supratentorielle, nicht-aneurysmatische Hirnblutungen

Die operative Therapie einer supratentoriellen, nicht-aneurysmatischen Hirnblutung bedarf jeweils einer individualisierten Therapieentscheidung. Bei Patienten mit einem kritischen Anstieg des intrakraniellen Drucks und/oder einer signifikanten neurologischen Ausfallsymptomatik durch den raumfordernden Effekt der Blutung sollte eine operative Therapie in Erwägung gezogen werden. Grundsätzlich wird zwischen der Kraniotomie und minimal-invasiven Operationstechniken (z.B. endoskopisch-assistierte Verfahren) zur Hämatomevakuation unterschieden. Die bestmögliche Therapieoption wird interdisziplinär durch die Klinik für Neurologie und Neurochirurgie festgelegt.

Nicht-aneurysmatische Kleinhirnblutungen

Eine operative Therapie bei spontanen, nicht-aneurysmatischen Kleinhirnblutungen soll in Erwägung gezogen werden, wenn der Hämatom-Durchmesser > 3 cm beträgt und/oder eine Hirnstammkompression oder klinisch und bildgebend Hinweise für einen Hydrocephalus

bestehen. In diesen Fällen ist die Therapie der Wahl die subokzipitale Kraniotomie mit Hämatomevakuation und Anlage einer externen Ventrikeldrainage (EVD). Die operative Behandlung einer raumfordernden, zerebellaren Hämorrhagie wird aufgrund der guten klinisch-neurologischen Ergebnisse von der AHA/ASA empfohlen. 67

Intraventrikuläre Blutungen/Hydrocephalus

In etwa der Hälfte aller Patienten mit spontaner, nicht-aneurysmatischer Hirnblutung kommt es zu einer intraventrikulären Hämorrhagie mit dem Risiko, einen akuten Hydrocephalus zu entwickeln. Bei klinischen und/oder bildgebenden Hinweisen für einen Hydrocephalus sollte die Anlage einer externen Ventrikeldrainage (EVD) frühzeitig erfolgen. Die Anlage einer lumbalen Liquordrainage bleibt einzelnen Spezialfällen vorbehalten. Eine lumbale Drainage ist bei allen nicht kommunizierenden Formen der Liquorzirkulationsstörung oder im Zweifelsfall kontraindiziert 8

Intrazerebrale Blutung während oder nach Lysetherapie bei ischämischen Hirnfarkten

Bei noch laufender Lyse ist diese umgehend zu stoppen. Ist die Lysetherapie bereits abgeschlossen, ist aufgrund der sehr kurzen Halbwertszeit von rt-PA ein konservatives, abwartendes Vorgehen gerechtfertigt. Der Patient wird überwacht.

Dunne JW (et al.), Q J Med 1987; 64:739-754.

^{7.} Morgenstern LB, Hemphill JC, Anderson C(et al.). Stroke. 2010;41:2108-2129.

^{8.} Steiner T, Unterberg A (et al.), 2021; DGN Leitlinie Intrazerebrale Blutungen

Nach der intrakraniellen Blutung

Soll die Sekundärprophylaxe mit oralen Antikoagulantien (OAK) wieder aufgenommen werden und wenn ja, wann?

- Es handelt sich um eine individuelle Entscheidung in Abhängigkeit des Rezidivblutungsrisikos und des Thromboembolierisikos. In Hochrisikosituationen für Thrombembolie (siehe <u>Seite 88</u> und «<u>Gerinnungskarte</u>» des KSSG; z.B. Patienten mit mechanischer Herzklappe...) ist der früheste Beginn nach 7 Tagen vertretbar.
- Bei Patienten mit niedrigem Thromboembolierisiko (z.B. Vorhofflimmern ohne vorhergehenden zerebralen Infarkt, niedrigem CHA2DS2-VASc-Score (< 2) sollte nach Nutzen-Risiko-Abwägung die Indikation für eine OAK kritisch gestellt werden. Die Gabe eines Thrombozytenaggregationshemmers zur Schlaganfallprophylaxe bei Vorhofflimmern kann nicht empfohlen werden. Bei Patienten mit höherem Thromboembolierisiko (CHA2DS2-VASc-Score > 2) und niedrigem Risiko einer Zweitblutung soll die OAK nach ca. 1 Monat wieder begonnen werden. In dieser Situation sind die NOAK aufgrund des niedrigeren Risikos für intrazerebrale Blutungen (im Vergleich mit Vit. K-Antagonisten) in Betracht zu ziehen
- · Generell·
 - · Indikation OAK überprüfen
 - Blutungsrisiko dem prophylaktischen Benefit gegenüberstellen (CHA₂DS₂-VASc-Score vs. HAS-BLED-Score)
 - Indikation für NOAK prüfen (Zulassung für nicht-valvuläres Vorhofflimmern, tiefe Venenthrombose und Lungenembolie) und einen Wechsel von einem Vit. K-Antagonisten auf ein NOAK evaluieren.
 - ggf. OAK mit Vit. K-Antagonisten mithilfe von CoaguCheck-Kontrolle optimieren (bei kooperativem Patienten mit guter Compliance)

Reduktion des Risikos für eine Rezidivblutung

- Optimale Behandlung der arteriellen Hypertonie
- Alkoholgenuss vermeiden
- Nikotin-Stopp
- Individuelle Entscheidung über den (erneuten) Beginn einer Therapie mit Antikoagulantien oder Thrombozytenaggregationshemmern (bei hohem Risiko für thromboembolische Ereignisse ist ein Wiederbeginn der OAK zwischen 8 und 14 Tagen vertretbar).
- Eine schwere Leukenzephalopathie (Grad 2 nach van Swieten) weist ein erhöhtes Risiko für eine Rezidiyhirnblutung auf.
- Die zerebrale Amyloidangiopathie stellt eine Kontraindikation für die Antikoagulation und die Gabe von Thrombozytenaggregationshemmern dar

Dr. Monika Kapauer

Prof. Dr. Miodrag Filipovic

PD Dr. Georg Kägi

Prof. Dr. Wolfgang Korte

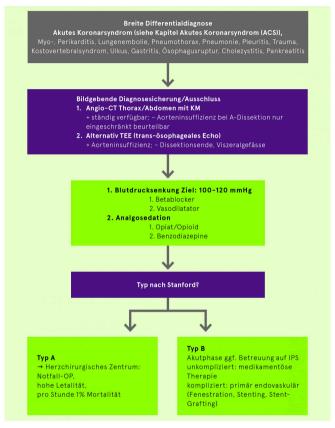
PD Dr. Marian Christoph Neidert

PD Dr. Martin Seule

Akutes Aortensyndrom

Grundsätzliches

- Das akute Aortensyndrom umfasst verschiedene, in Beziehung zueinanderstehende Aortenpathologien mit ähnlicher klinischer Präsentation und Therapie: die klassische Aortendissektion, das intramurale Hämatom (IMH), das penetrierende Aortenulkus (PAU) und die akute Aortenruptur (jatrogen oder traumatisch)
- Patho-Mechanismus: Intima-Ruptur mit Bluteintritt in die Media. Sonderform: lokalisiertes IMH bei Ruptur der Vasa vasorum, beim PAU führt eine Plaqueruptur zur Arrosion der Vasa vasorum mit lokalisiertem IMH
- Risikofaktoren: langjährige arterielle Hypertonie, Bindegewebserkrankungen (Marfan, Ehlers-Danlos, Loevs-Dietz), positive Familienanamnese, bikuspide Aortenklappe, Coarctation (Aortenisthmusstenose), entzündliche Gefässerkrankungen,
 - Dezelerationstrauma, schwere Atherosklerose, PAU: selten: Kokain, Amphetamin, Schwangerschaft
- Die Einteilung der Aortendissektion erfolgt bezüglich Symptomdauer in hyperakut (< 24 h), akut (1 bis ≤ 14 Tage), subakut (14 Tage bis 90 Tage) und chronisch (> 90 Tage). Hinsichtlich der Lokalisation des intimalen Einrisses und der Ausdehnung der Dissektion in der Aorta werden Dissektionen unterschieden nach der Stanford Klassifikation: Aortendissektion Typ A mit Befall der Aorta ascendens. Aortendissektion Typ B ohne Befall der Aorta ascendens.
- Die Aortendissektion ist selten (Inzidenz: ca. 6/100'000 Pers./Jahr)
- Bei der Aortendissektion Typ A kommt es häufig (2/3 der Fälle) und früh zu Komplikationen: Perikardtamponade/ruptur, Myokardischämie (Kompression/Obliteration der Koronargefässe) oder Malperfusion aortaler Äste. Die Letalität ist in den ersten 48 Std. 1% pro Stunde und die 30-Tage-Mortalität nach operativer Behandlung liegt bei ca. 30%.
- Bei der unkomplizierten Aortendissektion Typ B beträgt die Letalität < 10% in den ersten 30 Tagen (unter maximaler intensivmedizinischer Therapie) aber bei komplizierter Form mit renaler


- Malperfusion, mesenteriale Ischämie, retrograde Dissektion oder gedeckte Ruptur steigt die Letalität bis auf 25%.
- IMH (10–25% der akuten Aortensyndrome): kann propagieren zu einer Aortenruptur oder einer akuten Dissektion. Regression ebenfalls möglich. Therapie analog Dissektion
- PAU (2-7% aller akuten Aortensyndrome): kann propagieren zu einem intramuralen Hämatom, Pseudoaneurysma, einer Aortenruptur oder einer akuten Dissektion. Der natürliche Verlauf ist aber gekennzeichnet durch das Grössenwachstum mit Ausbildung eines sakkulären oder fusiformen Aneurysmas. Therapie analog Dissektion, ggf. aggressiver aufgrund der hohen Rupturrate beim symptomatischen PALI

Akute Aortendissektion: Klinische Befunde

- Leitsymptom (85%): perakut einsetzender, reissender oder stechender, ggf. von proximal nach distal wandernder Thoraxschmerz.
 Falls Aorta ascendens betroffen, eher Thoraxschmerzen; falls
 Aorta descendens betroffen, eher Rückenschmerzen
- Hypertonie oder Hypotonie (Pseudohypotonie bei Befall der supraaortalen Äste, A-Dissektion mit Tamponade)
- BD-Differenz zwischen beiden Armen oder zwischen oberer und unterer Extremität
- Renale und/oder viszerale Ischämie
- · Zerebrale und/oder spinale Ischämie
- · Uni- oder bilaterale Beinischämie

Algorithmus: Akutes Aortensyndrom siehe nachfolgende Grafik

Akutes Aortensyndrom

Nach: Nienaber CA, Powell JT. Management of acute aortic syndromes, Eur Heart J. 2012:33(1).26-35

Akutmassnahme bei akuter Aortendissektion Typ B

- · Initiale Therapie siehe Grafik«Akutes Aortensyndrom»
- Alle Patienten mit akuter Aortendissektion m
 üssen in der Akutphase intensivmedizinisch überwacht werden.
- Medikamentöse Behandlung siehe nächster Abschnitt «Behandlung akuter und subakuter Aortendissektionen»)
- Engmaschige Kontrollen in der frühen Phase wegen erhöhtem Instabilitätsrisiko:
 - CT-Angiografie bei Eintritt, 3–5 Tage nach Symptombeginn und vor Entlassung; erneute CT-Angiografie auch bei erneutem Schmerzereignis oder Zeichen einer Komplikation
 - · Klinisch und CT-angiografische Kontrolle nach 4-6 Wochen
- Weitere Kontrollen (immer mit Bildgebung) analog der chronischen Aortendissektion

Behandlungsempfehlungen in der akuten/subakuten Phase einer Aortendissektion Typ B

Unkompliziert

- · Medikamentöse Therapie:
 - Aggressives Senken des Blutdrucks und der Herzfrequenz (Ziel-Blutdruck systolisch 100 120 mmHg; Ziel-Herzfrequenz 60 80 bpm; Initialbehandlung mit Betablocker, Ca-Antagonisten, sekundär: ACE Hemmer, AT2-Rezeptorblocker)
 - · Ausreichende Analgesie
- Falls bildgebende oder klinische Risikofaktoren bestehen, kann auch bei einer unkomplizierten Aortendissektion Typ B nach Stanford eine endovaskuläre Behandlung evaluiert werden:
 - · Bildmorphologische Risikofaktoren:
 - · Max. Aortendurchmesser > 40 mm
 - · Durchmesser des falschen Aortenlumen > 20-22 mm
 - · «Entry»grösse > 10 mm
 - · «Entry» an der kleinen Aortenkurvatur gelegen
 - · Blutiger Pleuraerguss
 - Bildgebende Malperfusion-Zeichen (ohne klinisches Korrelat)

- Klinische Risikofaktoren:
 - Refraktäre arterielle Hypertonie (Bedarf an > 3 verschiedenen ausdosierten Antihypertensiva)
 - Refraktäre Schmerzen > 12 h trotz adäguater Analgesie
 - · Wiedereintritt aufgrund der Dissektion

Kompliziert

- Zeichen einer komplizierten Aortendissektion (und damit Instabilität und auch einer drohenden Ruptur):
 - Neu aufgetretener hämorrhagischer Pleuraerguss oder periaortales Hämatom
 - Aortaler Durchmesser > 55 mm oder 7unahme > 4 mm in den ersten 90 Tagen
 - Erneute Symptome (siehe Klinische Befunde) wie persistierende Schmerzen, unkontrollierte arterielle Hypertonie oder Malperfusion
- Bei einer komplizierten Aortendissektion Typ B nach Stanford muss ein invasives Vorgehen in Erwägung gezogen werden, präferentiell im Sinne einer endovaskulären Behandlung (Stentgraft, TEVAR) oder selten mit offenem Aortenersatz (wenn TEVAR kontraindiziert).

Chronische Aortendissektion (>90 Tage)

- Medikamentöse Therapie:
 - Nachhaltige Blutdrucksenkung auf systolisch 100 120 mmHg (siehe akute Dissektion)
 - Kardiovaskuläre Sekundärprophylaxe mit Thrombozytenaggregationshemmer (z.B. Aspirin cardio 100 mg/Tag) und Statin (für letztere bestehen Hinweise auf Reduktion der Grössenprogression von Aneurysmata), insbesondere bei Vorliegen atherosklerotischer Gefässveränderungen
- Regelmässige bildgebende Kontrollen wegen Aortendilatation (Aneurysmabildung) und Re-Dissektionen mittels CT- oder MR-Angiografie:
 - Empfohlene Nachsorgeintervalle: 1, 6, 12 Monate nach Initialereignis, danach jährlich (sofern stabile Befunde).
 - Wenn die Aorta über 2 Jahre grössenstabil bleibt, können die

Kontrollintervalle verlängert werden.

- · Evaluation hinsichtlich interventioneller/chirurgischer Therapie:
 - · Aortaler Durchmesser ≥ 55mm oder Zunahme > 10 mm/Jahr
 - Erneute Symptome: Zeichen einer Malperfusion oder rezidivierende Schmerzen

Quellen/Links

- Isselbacher E, Preventzq O, Hamilton J et al. 2022 ACC/AHA Guideline for the Diagnosis and Managment of Aortic Disease. Circulation. 2022;146:00–00. https://doi.org/10.1161/CIR.0000000000001106
- Riambau V, Böckler D, Brunkwall J et al. Editor's Choice Management of Descending Thoracic Aorta Diseases. Eur J Vasc Endovasc Surg. 2017;53(1):4-52, https://doi.org/10.1016/j.ejvs.2016.06.005
- Erbel R, Aboyans V, Boileau C et al. ESC Guidelines on the diagnosis and treatment of aortic diseases. Eur Heart J. 2014;35(41): 2873–2926, https://doi.org/10.1093/eurheartj/ehu281
- Fattori R, Cao P, De Rango P et al. Interdisciplinary Expert Consensus Document on Management of Type B Aortic Dissection. J Am Coll Cardiol. 2013; 61(16)1:661-78, https://doi.org/10.1016/
 i.iacc.2012.11.072

PD Dr. Lukas Hechelhammer PD Dr. Regula von Allmen Dr. Alexander Poloczek Prof. Dr. Hans Rickli

Bauchaortenaneurysma (BAA)

Definition

Ein Aneurysma ist eine lokalisierte Erweiterung des Gefässdurchmessers auf das 15-fache der Norm oder mehr. Bei der Bauchaorta (Normdurchmesser 2.0 cm) spricht man deshalb ab einem Querdurchmesser von 3 cm von einem Bauchaortenaneurysma (BAA): 3.0-5.4 cm = «kleines BAA»: ≥ 5.5 cm = «grosses BAA». Beim «echten» Aneurysma sind alle Wandschichten des Gefässes ausgeweitet, beim «falschen» Aneurysma (spurium) sind die Innenschichten perforiert und die Ausweitung besteht bloss aus Adventitia (perforierendes aortales Ulkus. PAU), oder Umgebungsgewebe (sog. Pseudoaneurysma: z.B. nach Gefässanastomosen, traumatisch, iatrogen [Punktion]).

Epidemiologie und Ätiologie

Die Inzidenz des BAA variiert mit Alter und Geschlecht. Männer sind 3-6 Mal häufiger betroffen. Die geschätzte Prävalenz bei 65-Jährigen liegt in der westlichen Welt bei 2-5% und steigt danach um ca. 6% pro Dekade. Insgesamt war die Inzidenz in den letzten Jahren deutlich rückläufig, was vor allem mit Rauchstopp-Kampagnen und verbreiteter medikamentöser Sekundärprophylaxe erklärt wird.

BAA sind praktisch immer mit Atherosklerose assoziiert und entstehen durch eine Dysbalance zwischen Entzündungs-/Proteolyse- und Reparatur-Prozessen. BAA sind mit folgenden Faktoren assoziiert (odds ratio; 95% Konfidenzintervall): Nikotinkonsum (2.8: 2.5-3.1): pos. FA (erstgradig Verwandte: 2.0: 1.6-2.5); KHK (1.8; 1.7-2.0); Dyslipidämie (1.4; 1.3-1.5); arterielle Hypertonie (1.4; 1.3-1.5); Diabetes (0.7; 0.6-0.8, also protektiv>!). Daneben werden inflammatorische (aseptische Wandentzündung) und mykotische (mit Wandinfekt) BAA unterschieden

Das Rupturrisiko steigt exponentiell mit dem BAA-Querdurchmesser. Weitere Risikofaktoren für Ruptur sind Nikotinkonsum, weibliches Geschlecht, FA für Ruptur, arterielle Hypertonie und exzentrische Form des BAA. Im Gegensatz dazu ist die Längenausdehnung des BAAs für die Behandlungs**indikation** weniger relevant (wohl aber für die Behandlungsplanung). Das rupturierte BAA gehört im Westen bei Männern zu den 15 häufigsten Todesursachen, was Screening-Initiativen in Risikopopulationen (z.B. 65-jährige rauchende Männer mit arterieller Hypertonie) rechtfertigt.

Morphologie und Lokalisation

In unseren Breitengraden betreffen ca. 70% aller Aortenaneurysmen die Bauchaorta und beginnen fast immer unterhalb oder an den Nierenarterien. Knapp 25% sind thorakal gelegen; die restlichen involvieren den thorakoabdominalen Übergang. Das Poplitealaneurysma ist bei bis zu 10% der BAA syn- oder metachron assoziiert und sollte aktiv gesucht, bzw. ausgeschlossen werden.

Klinische Präsentation

Die meisten BAA sind bis zur Ruptur asymptomatisch und wachsen unbemerkt

- Pulsierende indolente Masse im Abdomen, verbreiterte Pulse femoral/popliteal
- · Entdeckt als Zufallsbefund bei bildgebender Untersuchung
- · Bekannte Familienanamnese
- Gezieltes Screening von Risikopopulationen (z.B. in UK/USA: Screening von 65-jährigen rauchenden Männern)

Symptomatische BAA

- Rücken- oder Flankenschmerzen, auch auslösbar durch direkte Palpation des BAA
- Verdrängung der benachbarten Organe: z.B. Wurzelsymptome/ Schmerzen durch WK-Arrosion
- Venöse Abflussstauung, Ureter-Abflussstauung, Dyspepsie (typisch beim inflammatorischen BAA)
- · Fieber/Sepsis/Entzündungszeichen bei mykotischem BAA
- Selten: periphere arterio-arterielle Embolie (akute periphere Ischämie)

Rupturierte BAA

Plötzlich auftretende Flankenschmerzen mit Ausstrahlung inguinal (selten ins Abdomen), evtl. (Prä-)Synkope (als vasovagale Reaktion auf retroperitoneale Blutung; initial praktisch nie Blutungsschock!)

- Schmerzhafte pulsierende Masse im Abdomen
- Kreislaufparameter bleiben zunächst oft im Normbereich (retroperitoneale Tamponade): Cave «pseudo-stabile» Situation:

time is life!

- Freie Ruptur in die Bauchhöhle: rapider Kreislaufzerfall, progredienter Blutungsschock
- Seltene Rupturformen: intestinale Fistel (1%: gastrointestinale Blutung, meist nach früherer Aortenprothese, immer Infekt); Cava-Fistel (1%: akute Rechtsherzinsuffizienz, Körperstammzyanose/Einflussstauung, auskultierbares Schwirren)

Diagnostik

- · Anamnese (inklusive Allergien und Sexualanamnese); klinische Untersuchung (inklusive periphere Ausmessung, Pulsstatus)
- Duplexsonografie (Sensitivität/Spezifität > 90%): erste Wahl für Screening, Monitoring von kleinen BAA
- · CT-Angiografie: Referenzstandard für Morphometrie zur konkreten Therapieplanung und bei V.a. Ruptur. Als Ausgangswert sollte mindestens einmal die gesamte thorakoabdominale Aorta inkl. Iliakalachsen abgebildet werden, im Verlauf (z. B. post EVAR) nur noch das betroffene Gefässsegment.
- MR-Angiografie: bei Kontraindikation gegen CT (z.B. junge (Strahlenbelastung!) oder schwer niereninsuffiziente Patienten)
- Nota Bene: konventionelle Angiografie als Diagnostikum irreführend (stellt nur das durchflossene Lumen dar)
- Untersuchungen zur präoperativen Risikostratifizierung (Carotis-Duplex, Bestimmung der cardio-pulmo-renalen Leistungsreserven)

Behandlungsindikation

Cave: Von allen BAA-Patienten stirbt letztlich nur ein Drittel an der Aneurysmaruptur, die meisten sterben an anderer (meist kardiovaskulärer!) Ursache. Das BAA gilt darum als Risikoäquivalent zur (oder Markererkrankung für eine) KHK: «best medical treatment» ist immer ein zentraler Behandlungspfeiler.

Aortenersatz bei asymptomatischem BAA: sobald das Rupturrisiko das elektive Operationsrisiko übersteigt

- Kleine BAA < 4.0 cm: Rupturrisiko vernachlässigbar, Bildgebung alle
 1–2 Jahre. medikamentöse kardiovaskuläre Sekundärprophylaxe
- Kleine BAA 4.0-5.4 cm: jährliche Expansion durchschnittlich ca.
 2-4 mm, jährliches Rupturrisiko bei knapp 1% (konsistent in mehreren RCT), Bildgebung alle 6 Monate (3 Monate, wenn > 5.0 cm), medikamentöse kardiovaskuläre Sekundärprophylaxe
- Grosse BAA ≥ 5.5 cm: deutlicher Anstieg des Rupturrisikos (bei 6.0-7.0 cm geschätzte 10-20%/Jahr), elektiver Aortenersatz zu erwägen je nach individuellem Nutzen-/Risiko-Verhältnis
- Erhöhtes Rupturrisiko: bei Frauen, raschem Wachstum (≥ 1.0 cm/ Jahr), aktiven Rauchern mit COPD, unkontrollierter Hypertonie
- Nota Bene: Bei langsamer Progression ist Beobachtung bis zu 5.5 cm Durchmesser (bei Durchschnittspatienten!) gleich sicher wie (aber kosteneffizienter als) der offene/endovaskuläre Aortenersatz (konsistente Erkenntnis in 2 grossen RCT: UK SAT und ADAM).

Symptomatisches BAA

- Nicht-inflammatorisch: dringliche Indikation (24–48 Std.) unabhängig vom Durchmesser, präop. Risikostratifizierung erwägen
- Inflammatorisch: vorbereitende Steroidtherapie je nach aktuellem Durchmesser manchmal gerechtfertigt

Rupturiertes BAA

- · Absolute Notfallindikation (grundsätzlich unabhängig vom Alter)
- Ausnahmen: ausdrückliche Ablehnung/Patientenverfügung, prohibitive gesundheitliche Umstände (wie z.B. Demenz, unkontrolliertes Tumorleiden)

OP-Vorbereitung

Asymptomatisches BAA: hochelektiver Eingriff

- · Schichtbildgebung (CT-Angiografie) zur konkreten Therapieplanung
- Risikostratifizierung internistisch und anästhesiologisch: ggf. kardiologisches und pneumologisches Konsil, Bestimmung der Nierenfunktion (GFR)

- Dokumentation präoperativer Gefässstatus
- ASS und Statine perioperativ weitergeben (nicht pausieren)

Symptomatisches BAA: dringlicher Eingriff

- Grosslumige Zugänge, notfallmässige anästhesiologische Beurteilung
- Notfallmässige CT-Angiografie (Rupturausschluss, Therapieplanung)
- Weitere Abklärungen ie nach Zustand des Patienten

Rupturiertes BAA: absoluter Notfall (time is life)

- Ständige anästhesiologische Begleitung
- Hämodynamik: keine zeitraubende hämodynamische «Stabilisation» mittels Volumen/Katecholaminen, denn nur die rasche Blutungskontrolle rettet den Patienten
- «Normale» Blutdruckwerte (> 80-100 mmHg systolisch) sind bei ansprechbarem Patienten nicht erstrebenswert (assoziierter Blutungsdruck verhindert lebensrettende Tamponade, Volumen führt zu Verdünnungskoagulopathie und Auskühlung)
- Trotz Zeitdruck: wenn irgend möglich CT-Angiografie (Operationsplanung, Eignung EVAR?)
- · Falls Bildgebung bereits extern: direkte Aufnahme des Patienten in OP-Vorbereitung
- Cave: keine Operation ohne Desinfektion/Abdeckung, keine heroische Laparotomie ausserhalb des OP

Künstlicher Aortenersatz

Die Rupturgefahr beim BAA kann nur mittels künstlichem Aortenersatz dauerhaft ausgeschaltet werden; eine medikamentöse Therapie zur BAA-«Schrumpfung» existiert aktuell nicht.

Offen-chirurgischer Aortenersatz mittels Kunststoff-Prothese

- Zugang: mediane (oder quere) Laparotomie, ggf. (retroperitoneale) Lumbotomie (je nach Aneurysmakonfiguration)
- Bei juxta-/suprarenaler Ausdehnung: suprarenale Aortenklemme (warme Nierenischämie!) nicht länger als 30 Min., andernfalls ggf. Nierenkälteperfusion
- · Falls Iliakalachsen nicht betroffen: Rohrprothese (ca. 30%)
- · Bei Y-Prothese (ca. 70%) distale Anschlüsse wenn möglich im Abdomen

- (femorale Anastomosen wegen Infektrisiko zu vermeiden). Wenn möglich Revaskularisation beider Aa iliacae internae (Gesässclaudicatio)
- Erwartete perioperative Mortalität/Morbidität des offenen Aortenersatzes hängt von der Patientenselektion ab: bei theoretisch EVARgeeigneten Patienten ca. 1% Mortalität, bei EVAR-ungeeigneten 1–3% Mortalität. Permanente Dialysepflicht < 1%. Neue Störung der Sexualfunktion (meist retrograde Ejakulation): 10–20%

Endovaskulärer Aortenersatz (EVAR) mittels Stentgraft-Prothese

- · Kollaboration interventionelle Radiologie ⇔ Gefässchirurgie
- Gemeinsame Beurteilung der anatomischen Eignung der Zugangsgefässe und Verankerungszonen (gemäss instructions for use: 65–75% aller BAA geeignet)
- Perkutaner Zugang (oder kontrollierter chirurgischer Zugang: «cut down») zu den Femoralgefässen je nach Set-up/Eignung der Gefässe
- Infrarenales Absetzen der Prothese unter radiologischer Kontrolle und Atemstillstand des Patienten, bei juxta-/suprarenaler BAA-Ausdehnung endovaskuläre Adjuncts (fenestrierte/gebranchte Prothesen, Zusatzleitungen für «chimneys» oder «snorkels»)
- · Intraoperative Angiografie zum Ausschluss eines relevanten Endoleaks
- Erwartete perioperative Mortalität bei konventioneller EVAR < 1%, bei komplexer EVAR (mit adjuncts) 2–3%. Permanente Dialysepflicht ca. 1%.
 Neue Störung der Sexualfunktion (meist retrograde Ejakulation): 10–20%
- Cave: Bei offen-chirurgisch inoperablen (d.h. zu kranken) Patienten bringt EVAR keinen sicheren Überlebensvorteil zur konservativen Therapie (EVAR trial 2).

Offen-chirurgische und EVAR-Patientenpopulationen sind meist nicht vergleichbar, da offen-chirurgische Patienten oft eine negativ selektionierte Anatomie repräsentieren und EVAR-Patienten eine negativ selektionierte Physiologie. Bei vergleichbaren Patienten zeigen praktisch alle randomisierten, kontrollierten Studien (RCT) konsistent einen perioperativen Überlebensvorteil für EVAR (kleineres Operationstrauma), aber eine höhere sekundäre Reinterventions- und Rupturrate (weniger nachhaltige Verankerung), so dass spätestens nach 2 Jahren die Behandlungsresultate beider Methoden vergleichbar sind inkl.

Lebensqualität und Sexualfunktionsstörungen (EVAR 1. DREAM, ACE, OVER Trial) Nach 8-10 Jahren bietet der offene Aortenersatz einen Überlebensvorteil. Wichtigste Selektionskriterien für die geeignete Therapie sind die anatomische Eignung und die lokale Expertise. Bei einer Lebenserwartung von > 8-10 Jahren ist der offen-chirurgische Aortenersatz wenn möglich als nachhaltiger vorzuziehen.

Rupturiertes BAA

Schockmanagement und Dauer bis zur mechanischen Blutungskontrolle (Aortenballon oder -klemme) bestimmen die Überlebenschancen (und nicht die Wahl der Operationsmethode); bei vergleichbaren Patienten sind offener und endovaskulärer Aortenersatz im Notfall äquivalent (IMPROVE Trial)

- CT-Angiografie, verfügbares Material/Expertise entscheidend!
- Ist der Patient zu instabil für die Bildgebung, muss meist offen operiert werden (ggf. mit endovaskulärem Aortenokklusionsballon) und die Prognose wird deutlich schlechter.
- Cave: Bei langer Ballonokklusion der Aorta steigt die Gefahr der viszeralen Ischämie (mit sekundärer Mortalität)
- · EVAR sollte im Notfall möglichst in lokaler Anästhesie (LA) durchgeführt werden, um die minimal-invasiven Vorteile zu nutzen.
- Cave: Über die unversorgte Rupturstelle können nach EVAR Endoleaks zu abdominalem Compartment-Syndrom (mit hoher eigener Mortalität) führen (Blasendruck-Monitoring!).
- Die erwartete Operationsmortalität beim rupturierten BAA liegt bei optimiertem Management bei 15-25%.

Entlassungsmanagement

Der postoperative Gefäss-Status sollte inklusive arterieller Ausmessung vor Austritt dokumentiert werden, genauso wie die Nierenfunktion.

Offener Aortenersatz

- Entlassung um den 6. postop. Tag, Bauchgurt nur zu Mobilisation und nur bei subjektivem Benefit
- Kuraufenthalt oder Rehabilitation meist nicht erforderlich
- Bauchdeckenschonung für 6-8 Wochen (30% Inzidenz von Nar-

- benhernien wegen assoziierter Bindegewebsschwäche)
- Chirurgische Kontrollen nach 3 Monaten und 1 Jahr, duplexsonographische Kontrollen der Anastomosenregionen alle 3–5 Jahre
- · Aneurysmacheck weiterer Prädilektionsstellen
- · Aneurysmascreening bei erstgradig Verwandten zu empfehlen
- Konsequente Eliminierung vaskulärer Risikofaktoren und medikamentöse Sekundärprophylaxe (Rauchstopp, Statin, ACE-Hemmer, Blutdruckkontrolle, ASS)

EVAR

- · Entlassung um den 3. postoperativen Tag, volle Belastung möglich
- Keine duale Tc-Hemmung bloss wegen der Stentgraftprothese
- · Kuraufenthalt oder Rehabilitation meist nicht erforderlich
- Erste CT-Angiografie nach 4-6 Wochen zum Ausschluss eines Endolecks. Bei Endoleckage Monitoring nach Möglichkeit mittels contrast enhanced ultrasound (CEUS). Typ I und III EL müssen interventionell behoben werden, Typ II kann beobachtet werden, solange es nicht zu einem sekundären Wachstum des Aneurysmasacks kommt
- Patientenführung in der chirurgischen oder interventionellen Nachsorgesprechstunde (mindestens 1× jährlich)
- · Aneurysmacheck weiterer Prädilektionsstellen
- · Aneurysmascreening bei erstgradig Verwandten zu empfehlen
- Konsequente Eliminierung vaskulärer Risikofaktoren und medikamentöse Sekundärprophylaxe: Rauchstopp, Statin, ACE-Hemmer, Blutdruckkontrolle und ASS

Quelle/Link

Wanhainen A, Verzini F, Van Herzeele I et al. Editor's Choice –
European Society for Vascular Surgery (ESVS) 2019 Clinical Practice
Guidelines on the Management of Abdominal Aorto-iliac Artery
Aneurysms. Eur J Vasc Endovasc Surg. 2019 Jan;57(1):8-93.
https://doi.org/10.1016/j.ejvs.2018.09.020

Prof. Dr. Florian Dick PD Dr. Lukas Hechelhammer, Dr. Alexander Poloczek

Periphere arterielle Verschlusskrankheit (PAVK)

Allgemeines

- · Zu 90-95% arteriosklerotischer Genese (5-10% entzündlich, traumatisch embolisch u.a. Seltenes ...)
- Betrifft zu > 90% die unteren Extremitäten
- · Ist überwiegend eine Erkrankung des alten Menschen (ca. 20% im Rentenalter betroffen)
- · Risikofaktoren analog KHK; die wichtigsten Risikofaktoren sind Rauchen und Diabetes mellitus
- Primär klinische (Verdachts-)Diagnose, Diagnosesicherung mittels ABI (Ankle-Brachial-Index, Definition siehe Diagnostik)
- Ca. 75% der Patienten sind asymptomatisch!
- Prognose bezüglich betroffener Extremität gut (75% stabiler Verlauf)
- Prognose quoad vitam schlecht (Mortalität ca. 30% /5 Jahre, v.a. wegen koronarer Ereignisse)
- Ca. 61% der Patienten mit gleichzeitiger kardialer und/oder zerebraler atherosklerotischer Erkrankung

Einteilung, Definitionen

Definition der PAVK

Ruhe-ABI ≤ 0.9 (Werte von 0.91-0.99 gelten als «grenzwertig pathologisch») oder Abfall des ABI um > 15-20% im Belastungstest oder Zustand nach Revaskularisation oder klinisches Pulsdefizit

Einteilung der PAVK

Es empfiehlt sich eine Unterscheidung in akute und chronische Formen:

Akute Verschlusskrankheit

Häufigste Ursachen: Kardiale Embolie, arterioarterielle Embolisation aus Plaque/Aneurysma, thrombosiertes Poplitealaneurysma

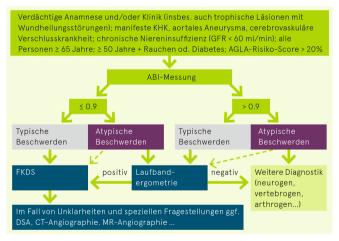
Wegen fehlender Zeit zur Kollateralenbildung oft schwere Klinik («6×-P») und rascher Handlungsbedarf

«6×P»: Pulselessness (Pulslosigkeit), Pallor (Blässe), Pain (Schmerz). Paresthesia (Sensibilitätsstörung/-verlust), Paralysis (motorische Störung/Lähmung), Prostration (Erschöpfung mit lebensgefährdender nekrosebedingter Toxinausschüttung)

Ziel: Rasche Revaskularisation in Abhängigkeit folgender Kriterien:

Das akut kalte Bein	Kritische, komplette Ischämie	Kritische, inkomplette Ischämie
Akut wenige Stunden	Sensibilität↓, Motorik↓ Knöchelverschlussdruck < 50 mmHg, meist nicht messbar	Sensibilität ↓, Motorik erhalten Knöchelverschlussdruck < 50 mmHg
	Ziel: Revaskularisation innerhalb von 6 Std. ab Symptombeginn	Ziel: Revaskularisation beschleunigt, aber nicht notfallmässig (auch in Abhängigkeit von der Schmerz- symptomatik und vom Ausmass der Sensibilitätsstörung)
	Ambulant: Unverzüglich Zuweisung auf ZNA (DA Gefässchirurgie)	Ambulant: Rasche Zuweisung auf ZNA (DA Gefässchirurgie)
	<i>Stationär:</i> Unverzügliche Information DA Gefässchirurgie	Stationār: Rasche Information DA Gefässchirurgie

Bei jeglicher Form der akuten kritischen Ischämie soll ein Heparin-Bolus von 5000 E iv noch auf der Notfallzentrum KSSG (NFZ) verabreicht werden. Anschliessend Beginn einer Heparin-Infusion nach hausinternem «TVT»-Infusions-Schema (Ausnahme: HIT Typ II in Anamnese, in diesem Fall Einsatz von Argatroban). Zusätzlich: Schmerztherapie, betroffene Extremität tief lagern, ruhigstellen, lockerer Watteverband zum Schutz und zur Wärmeerhaltung (keine direkte Wärmezufuhr!).


Chronische Verschlusskrankheit

Stadium I	Asymptomatisch (= «schweigende Mehrheit»)	
Stadium IIa	Claudicatio, Leidensdruck akzeptabel (Gehstrecke > 200 m)	
Stadium IIb	Claudicatio, Leidensdruck b elastend (Gehstrecke < 200 m)	
Stadium III	Kritische Ischämie, Ruhesymptome, keine trophische Läsion	
Stadium IV	Kritische Ischämie, Ruhesymptome, ischämisch bedingte trophische Läsion	

Einteilung adaptiert nach Fontaine

Im Fall vorhandener trophischer Läsionen, die begleitend zur PAVK und nicht auf dem Boden der Perfusionsstörung entstanden sind, werden die Stadien I und II mit dem Zusatz «kompliziert» bezeichnet. Im Stadium III und IV: Knöcheldrücke < 50 mmHg; rasche Zuweisung ins Ostschweizer Gefässzentrum oder ggf. Notfallzentrum KSSG (NFZ).

Stufendiagnostik

DSA = konventionelle digitale Subtraktionsangiografie = «konventionelle Angiografie»; FKDS = farbkodierte Duplexsonografie

Anamnese

Prädisponierende Faktoren:

Vaskuläre Risikofaktoren: Alter, Rauchen, Diabetes mellitus, arterielle Hypertonie, Hypercholesterinämie, Kreatinin-Clearance < 60 ml/min, männliches Geschlecht, positive Familienanamnese (kardiovaskuläres Ereignis bei Eltern, Grosseltern oder Geschwistern vor dem 55. Lebensjahr bei Männern resp. dem 60. Lebensjahr bei Frauen) Manifeste Atherosklerose: Koronar, zerebrovaskulär, je gut 30% Risiko für PAVK

Pro «vaskuläre Beschwerdeätiologie»

Beschwerden zuverlässig reproduzierbar bei Belastung (langsam zunehmend); Lokalisation in Muskelgruppen (Gesäss, Oberschenkel, Wade usw.); Beschwerderückgang wenige Minuten nach Belastungsstopp; bei St. n. PTA: wie vor Intervention; Charakter: krampfartig/Müdigkeit

Kontra «vaskuläre Beschwerdeätiologie»

Beschwerden auch beim Stehen; Anlaufschmerz; Bergabgehen schlimmer als Bergaufgehen; Besserung betont nach Absitzen und/oder Vornüberbeugen des Oberkörpers (typisch für Claudicatio spinalis); Charakter brennend/stechend/elektrisierend; inkostantes Auftreten

Klinik

Inspektion

 Hautfarbe blass, ggf. bei chronischer kritischer Ischämie (Stadium III und IV) düsterrot/ livide insbesondere bei Tieflagerung der Extremität, Abblassung bei Elevation: Onychodystrophie, Alopezie (Cave bei Diabetes mellitus: Trockene, warme, rosige Haut trotz reduzierter arterieller Perfusion bei Neuropathie möglich)

Temperaturprüfung mit Handrücken

Ggf. Seitendifferenz

Rekapillarisation

Prüfung mit Fusselevation (normal ≤ 3–5 Sek.)

Puls

 Inguinal, popliteal, A. dorsalis pedis, A. tibialis posterior, im Zweifel Vergleich mit eigenem Puls; Arrhythmie? (Hinweis auf mögliche kardiale Embolie)

Auskultation

- · Über Arterienverlauf; Sensitivität ↑ durch Belastung
- Je höhergradig die Stenose, desto höherfrequent (nicht lauter) das Geräusch. Cave: Spezifität Strömungsgeräusch ca. 40% → bis 60% falsch positive Untersuchungen; Sensitivität 75% → 25% falsch negative Untersuchungen

Ankle-Brachial-Index (ABI)

- = pro Bein höherer Knöcheldruck über A. dorsalis pedis oder A. tibialis posterior im Verhältnis zu höherem systolischem Oberarmblutdruck
 - Bezüglich Diagnose PAVK: Sensitivität 95%, Spezifität 100%
 - Normwert unter Ruhebedingungen ≥ 1.0-1.4. Borderline 0.91-0.99, eindeutig pathologisch ≤ 0.9
 - ABI > 1.4: Nicht verwertbar für PAVK-Diagnostik, da Mediasklerose wahrscheinlich (v.a. bei Diabetes mellitus, chronischer Niereninsuffizienz chronischer Steroidmedikation)
 - Wann ist ABI-Messung empfohlen? → siehe Abb. «Stufendiagnostik»

Die bildgebenden Verfahren

		FKDS	DSA	СТА	MRA
	Stärken	nicht-invasiv keine Strahlenbe- lastung funktionelle Mes- sung und Bildge- bung kombiniert zuverlässige Steno- segradierung Gefässwandstruktur und Umgebung dar- stellbar mobiles Gerät	Übersichtlichkeit Auflösung dynamisch funktionelle Komponente Interventionsbereitschaft	grosse Übersicht- lichkeit (inklusive nichtvaskulärer Strukturen) wenig invasiv rasch	grosse Über- sichtlichkeit (inklusive nicht- vaskulärer Struk- turen, insb. Weichteile) wenig invasiv
	Schwächen	Arztpersonalintensiv fehlende Übersicht in einem Bild Hürden: Meteoris- mus, Kalk mit Schall- schatten	invasiv Strahlenbelastung Kontrastmittel nur Gefässlumen darstellbar	Kontrastmittel Strahlenbelastung	(Kontrastmittel) bei Pacemaker bei Klaustrophobie Tendenz zur Überschätzung Stenosegrad
	Limitationen	Peripherie/Akren (Fuss distal, evtl. crural); keine trans- thorakale Gefässdar- stellung		Peripherie	Peripherie, Stent, Metallprothesen (→ Artefakte, schein- bare Perfu- sionausfälle)

FKDS = farbkodierte Duplexsonografie: DSA = digitale Subtraktionsangiografie: CTA = Computertomografie-Angiografie; MRA = Magnetresonanz-Angiografie

Therapie

Sekundärprävention

PAVK-Patient = vaskulärer Hochrisikopatient (nach ESC/EAS und AGLA innerhalb höchster Risikogruppe)

Thrombozytenfunktionshemmung:

- Asymptomatische Patienten (ohne vorhergehende Revaskularisation und **ohne** anderweitige manifeste Arteriosklerose): Gemäss ESC kein Thrombozytenhemmer empfohlen (Klasse III A Empfehlung): Gemäss AHA Thrombozytenhemmer «angemessen» (Klasse II a C (Expert Opinion) Empfehlung) -> individueller Entscheid nötig (ggf, Ausmass der atherosklerotischen Veränderungen in der Bildaebung. Patientenpräferenz, Blutungswahrscheinlichkeit etc.)
- Symptomatische Patienten und asymptomatische Patienten nach Revaskularisation: Einfache Plättchenhemmung mit Aspirin oder Clopidogrel
- Falls orale Antikoagulation in volltherapeutischer Dosierung etabliert, ist i.d.R. keine zusätzliche Gabe eines Thrombozytenhemmers indiziert (ausser nach Revaskularisationen für einen limitierten Zeitraum gemäss gefässmedizinischer Verordnung)
- Bei niedrigem Blutungsrisiko (keine Anämie, keine frühere schwere oder intrakranielle Blutung, keine schwere Herzinsuffzienz, GFR 30 ml/min, Patientenalter präferenziell < 75
 Jahre) kann bei hohem Risiko für ischämische Ereignisse (insbesondere Patienten mit
 polyvaskulärer Erkrankung, fortgeschrittener PAVK III/IV resp. Status nach «Major Adverse
 Limb Event» und bei Diabetikern mit PAVK) die Gabe von Rivaroxaban 2.5 mg 2x/Tag

zusätzlich zu Aspirin cardio 100 mg 1x/Tag erwogen werden.

Thrombozytenfunktionshemmung bei Diabetikern:

- Aspirin cardio 100 mg 1x/Tag empfohlen bei Diabetikern mit bekannter kardiovaskulärer atherosklerotsicher Erkrankung und Diabetiker 2 50 Jahre mit wenigstens 1 Major- Risikofaktor (positive Familienanamnese für frühzeitige atherosklerotische Erkrankung, arterielle Hypertonie, Dyslipidämie, Nikotin, chron. Nierenerkrankung) und gleichzeitig vertretbarem Blutungsrisiko.
- · Nicht empfohlen bei < 50 Jahren ohne Risikofaktoren
- Individuelle Entscheidung bei < 50 Jahren mit einem oder mehreren Risikofaktoren (keine belastbaren Daten vorhanden)
- · Generelle Kontraindikation für Aspirin bei Lebensalter < 21 Jahren (Risiko Reye-Syndrom)

Statin

 Alle Patienten mit manifester PAVK: Statin indiziert mit Ziel: LDL-C Reduktion um ≥ 50% und Zielwert < 1.4 mmol/l

Rauchstopp

Kontrolle von Blutdruck: Ziel < 140/90 mmHg, bei älteren Patienten (> 65 J.) mit Ausgangswerten ≥ 160 mmHg evtl. Reduktion auf 140–150 mmHg, um Orthostase zu vermeiden. Bei Diabetikern Ziel optimal < 130/80 mmHg, wenn dies ohne relevante Nebenwirkungen erreicht werden kann, ansonsten < 140/90 mmHg anstreben.

Kontrolle von Blutzucker: Ziel HbA_{1c} < 8.0% bei älteren Patienten mit langer Diabetesdauer oder Patienten mit schwerer Hypoglykämie in der Anamnese, begrenzter Lebenserwartung, fortgeschrittenen mikro- und/oder makrovaskulären Komplikationen und beträchtlichen komorbiden Erkrankungen; Ziel HbA_{1c} < 7% bei jungen Erwachsenen mit kürzlich diagnostiziertem Diabetes mellitus

Erste therapeutische Option im Stadium IIa (-b)

7iel: > 3x 30 Min /Woche Effekt ab 3 Monaten abschätzbar

Nach Möglichkeit strukturiert im Rahmen eines ambulanten vaskulären Rehabilitationsprogramms (im KSSG sowie am Spital Wil, Grabs und Altstätten verfügbar)

Optional ab Stadium IIb der PAVK (individuell ie nach Leidensdruck, Co-Morbiditäten usw. zu entscheiden). Je nach Befund erfolgt die Revaskularisation entweder mittels interventionell-radiologischer Katheterintervention (Ballon-Angioplastie +/- Stentimplantation), operativ (i.R. eines gefässchirurgischen Fingriffs) oder im Hybrid-Verfahren (Kombination Katheterintervention und gefässchirurgischer Eingriff)

Bei kritischer Ischämie (v.a. bei distalen/akralen Gefässverschlüssen) ohne Möglichkeit einer interventionellen oder operativen Verbesserung der arteriellen Perfusion erwägen

Quellen/Links:

- 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS), European Heart Journal (2018) 39, 763-816. https://doi.org/10.1093/eurhearti/ehx095
- 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: Executive Summary; 2017 Circulation, 2017:135:e686-e725, https://doi.org/10.1161/ CIR.0000000000000470
- 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2022, Diabetes Care 2022;45(Suppl. 1):S144-S175. https://doi.org/10.2337/dc22-S010
- 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk; Eur Heart J. 2020 Jan 1;41(1):111-188. https://doi.org/10.1093/eurheartj/ehz455
- Hardung D et al. Dual-Pathway Inhibition bei Atherosklerose; Dtsch Med Wochenschr 2019: 144: 1384-1389. https://doi.org/10.1055/ a-0868-3360

Dr. Alexander Poloczek

Dr. Enrique Alejandre-Lafont, Prof. Dr. Florian Dick

Pulmonale Hypertonie

Definition

Die pulmonale Hypertonie (PH) ist neu definiert als Erhöhung des mittleren pulmonal-arteriellen Drucks (=Druck in der Arteria pulmonalis: mPAP) > 20 mmHg im Rechtsherzkatheter in Ruhe (ESC/ERS Leitlinien 2022). Die hämodynamische Messung im Rechtsherzkatheter ist der Gold-Standard und kann für eine definitive Diagnose und hämodynamische Klassifikation einer PH nicht durch die Echokardiografie ersetzt werden. Die pulmonal-arterielle Hypertonie (PAH) ist kein Synonym für PH sondern eine Untergruppe der PH (vgl. unten).

Häufigkeit

Man geht heute davon aus, dass 1% der Weltbevölkerung von einer PH betroffen ist. Die häufigste Form der PH ist die PH bei zugrundeliegender Linksherzerkrankung (Gruppe 2), gefolgt von der PH bei Lungenerkrankung (Gruppe 3). Diese beiden Gruppen machen zusammen > 80% der Fälle einer PH aus. Die PAH dagegen ist eine seltene Krankheit. Die Inzidenz der PAH beträgt in Europa etwa 5-10 auf 1'000'000/ Jahr und die Prävalenz etwa 15-60 auf 1'000'000. Die PAH gilt deshalb als «orphan disease». Frauen sind häufiger betroffen. Am häufigsten ist dabei die idiopathische PAH. Unter den Formen der assoziierten PAH sind die Kollagenosen am häufigsten vertreten, insbesondere die systemische Sklerose

Hämodynamische Definitionen der pulmonalen Hypertonie im Rechtsherzkatheter

Definition	Hämodynamische Kriterien*	Klinische Gruppe*
Pulmonale Hypertonie (PH)	mPAP > 20 mmHg (neu, vorher ≥ 25 mmHg)	Alle
Prä-kapilläre PH	mPAP > 20 mmHg und mPAWP ≤ 15 mmHg und neu (2022) obligat: PVR ≥ 3 WU	Gruppe 1, 3,4, 5
Post-kapilläre PH	mPAP > 20 mmHg mPAWP > 15 mmHg; immer Diffe- renzierung in isoliert post-kapil- läre PH (IpcPH) oder kombiniert prä- und post-kapilläre PH (CpcPH)	Gruppe 2 (5)
- IpcPH	und PVR < 3 WU (neu kein Krite- rium mehr für den diastolischen Druckgradienten)	Gruppe 2
- СрсРН	und PVR ≥ 3 WU (neu kein Krite- rium mehr für den diastolischen Druckgradienten)	Gruppe 2 (theoretisch können auch zwei Entitäten vorliegen: eine post-kapilläre PH und eine unabhängige prä-kapil- läre PH)
Unklassifizierte PH (neu 2022)	mPAWP ≤ 15 mmHg und PVR < 3 WU d. h. erhöhter pulmonaler Fluss	keine
PH unter Belastung (neu 2022)	Steigung mPAP/cardiac output von Ruhe zu Belastung >3 mmHg/ I/min	keine

^{*}Siehe Klassifikation der pulmonalen Hypertonie.

Abkürzungen: PH = pulmonale Hypertonie, mPAP = mittlerer pulmonal-arterieller Druck, mPAWP = mittlerer pulmonal-arterieller Verschlussdruck, PVR = pulmonalvaskulärer Widerstand. Einheit: WU = Wood Units (dyn×sec/cm⁵=WU×80)

Klassifikation der Pulmonale Hypertonie

Die PH wird gemäss ihrer Ätiologie in **fünf klinische Gruppen** eingeteilt. Die PAH ist die Bezeichnung für die Gruppe 1 (und kein Synonym für PH). Im Gegensatz dazu versteht man unter Funktionsklassen eine Einteilung des klinischen Schweregrads (analog NYHA-Klasse), welche primär für PatientInnen mit PAH angewendet wird (Unterkapitel Symptome der PAH <u>Seite 212</u>).

Klassifikation (5 klinische Gruppen)

1. Pulmonal-arterielle Hypertonie (PAH)	1.1. Idiopathisch 1.1.1. Non-responder auf Vasoreaktivitätstestung 1.1.2. Akute Responder auf Vasoreaktivitätstestung 1.2. Hereditär 1.3. Arzneimittel- oder Toxin-induziert 1.4. Assoziiert mit: 1.4.1. Kollagenosen 1.4.2. HIV-Infektion 1.4.3. Portale Hypertension 1.4.3. Kongenitalen Herzkrankheiten 1.4.5. Schistosomiasis 1.5. PAH mit venöser/kapillärer Beteiligung 1.6. Persistierende PH des Neugeborenen
2. PH assoziiert mit Linksherzerkran- kungen	2.1. Herzinsuffizienz 2.1.1. Herzinsuffizienz mit erhaltener Auswurffraktion 2.1.2. Herzinsuffizienz mit reduzierter oder leicht reduzierter Auswurffraktion 2.2. Klappenerkrankungen 2.3. Kongenitale/erworbene kardiovaskuläre Erkrankungen mit post-kapillärer PH
3. PH assoziiert mit Lungenerkrankungen und/oder Hypoxie	3.1. Obstruktive Lungenerkrankungen/Emphysem 3.2. Restriktive Lungenerkrankung 3.3. Lungenerkrankungen mit gemischt obstruktiv/ restriktivem Muster 3.4. Hypoventilations-Syndrome 3.5. Hypoxie ohne Lungenerkrankung (z.B. Höhe) 3.6. Entwicklungsstörungen der Lunge
4. PH assoziiert mit Pulmonalarterien- obstruktion	4.1. Chronisch thromboembolische PH (CTEPH) 4.2. Anderen Pulmonalarterienobstruktionen (z.B. Tumor)
5. PH mit unklarem/multifaktoriellem Mechanismus	5.1. Hämatologische Krankheiten 5.2. Systemerkrankungen 5.3. Metabolische Störungen 5.4. Chronische Niereninsuffizienz (mit/ohne Dialyse) 5.5. Pulmonale thrombotische Tumormikroangiopathie 5.6. Fibrosierende Mediastinitis

Anamnese

- · Pulmonale/kardiale Vorerkrankungen
- · Familiäre Häufung
- · Rheumatologische Grunderkrankung (systemische Sklerose, systemischer Lupus erythematodes [SLE], rheumatoide Arthritis [RA])
- · Lebererkrankungen, HIV
- · Lungenembolien/Thrombosen

Medikamente/Drogen (siehe folgende Tab.)

Medikamente, Drogen und Toxine assoziiert mit PAH

Gesichert	Wahrscheinlich	
Aminorex	Kokain	Interferon-a und -β
Dexfenfluramin	Phenylpropanolamin	Alkylierende Substanzen
Fenfluramin	L-Tryptophan	Bosutinib
Benfluorex	Hypericum perforatum (echtes Johanniskraut)	Leflunomid
Toxisches Rapsöl	Diazoxid	Indirubin
Metamphetamine	Amphetamin	Ponatinib
Dasatinib	Sofosbuvir	Carfilzomib

Symptome der Pulmonalen Hypertonie

Die Symptome der PH sind unspezifisch. Die Diagnose wird aus diesem Grund häufig spät gestellt. Ein Leitsymptom ist die Anstrengungsdyspnoe. Weitere Symptome sind Müdigkeit, Gewichtszunahme oder periphere Ödeme, sowie in fortgeschrittenem Stadium Brustschmerzen, Palpitationen, Synkopen, Hämoptysen und Heiserkeit (Dilatation des Truncus pulmonalis). Der Schweregrad wird (analog NYHA bei Herzinsuffizienz) in **WHO Funktionsklassen** eingeteilt (diese Einteilung wird vor allem bei der PAH verwendet).

WHO Funktionsklassen

Funktionsklasse I	keine Beschwerden im Alltag, normale Leistungsfähigkeit
Funktionsklasse I	Beschwerden ab normaler körperlicher Anstrengung, leicht eingeschränkte Leistungsfähigkeit
Funktionsklasse III	Beschwerden bei leichter körperlicher Anstrengung, deutlich eingeschränkte Leistungsfähigkeit
Funktionsklasse IV	Beschwerden in Ruhe, Zeichen der Rechtsherzbelastung

Klinische Zeichen der Pulmonalen Hypertonie

Herzauskultation:

- · Akzentuierte pulmonale Komponente des 2. Herztones
- Systolikum über der Trikuspidalklappe (TK-Insuffizienz)
- · 3 Herzton

Diastolikum (Pulmonalklappeninsuffizienz)

Meist erst im fortgeschrittenen Stadium:

- Positiver hepatojugulärer Reflux
- Halsvenenstauung
- Hepatosplenomegalie
- Periphere Ödeme
- Aszites
- Zvanose

Zusätzlich können sich Zeichen der zugrundeliegenden kardialen oder pulmonalen Erkrankung finden.

Weitere initiale Untersuchungen

Röntgen-Untersuchung des Thorax

Häufig zeigen sich erweiterte Pulmonalarterien bzw. dilatierte hiläre Gefässe, es kann jedoch auch ein Normalbefund vorliegen. Das Ausmass der PH korreliert nicht mit dem Ausmass der radiologischen Veränderungen. Das Röntgenbild kann zudem Hinweise auf den Mechanismus der PH ergeben (Lungenparenchymerkrankung, kardiale Erkrankung).

FKG

Nicht diagnostisch, aber evtl. hinweisend.

Zeichen der Rechtsherzbelastung:

- R, ST-Senkungen und T-Negativierung in V1
- Rechtstyp oder überdrehter Rechtstyp
- P pulmonale (P > 0.25 mV in II)
- SıQııı-Typ
- RSB

Falls ein Vorhofflimmern vorliegt, ist die Wahrscheinlichkeit sehr hoch, dass es sich um eine PH bei Linksherzerkrankung handelt.

Echokardiografie

Die Untersuchung wird als Screening-Methode der Wahl eingesetzt und erfasst zudem eine Linksherzpathologie als Ursache der PH (PH Gruppe 2). Die Wahrscheinlichkeit des Vorliegens einer PH wird basierend auf der maximalen Geschwindigkeit der Trikuspidalklappeninsuffizienz (peak tricuspid regurgitant velocity, peak TRV; erlaubt eine grobe Abschätzung des systolischen pulmonalarteriellen Drucks, sPAP) und indirekten Zeichen einer relevanten PH eingeschätzt. Eine genaue Bestimmung des mPAP (zwingend notwendig für die Diagnose einer PH, vgl. Definition) ist mittels Echokardiografie nicht möglich. Die Abschätzung des rechtsatrialen Drucks ist unzuverlässig. Auf eine Addition eines geschätzten rechtsatrialen Drucks zum basierend auf der peak TRV geschätzten sPAP soll daher explizit verzichtet werden.

Wichtig: trotz neuer Definition der PH gemäss Rechtsherzkatheter sind die Grenzwerte für die peak TRV zur Abschätzung der Wahrscheinlichkeit einer PH unverändert geblieben.

Indirekte Zeichen einer relevanten PH:

- Rechtsventrikuläre (RV) Dilatation: RV Durchmesser > linksventrikulärer (LV) Durchmesser im Vierkammerblick an der Basis
- · «D-shape» des LV als Ausdruck der RV-Druckbelastung
- Neu (2022): Abnormes «RV-PA Coupling»: Ratio tricuspid annular plane systolic excursion (TAPSE)/sPAP < 0.55 mm/mmHg
- Akzelerationszeit im rechtsventrikulären Ausflusstrakt < 105 ms und/oder midsystolischer Notch im PW-Dopplerprofil
- Rechtsatriale Dilatation: rechtsatriale Fläche im Vierkammerblick > 18 mm2
- Breite und Atemvariabilität der Vena cava inferior: > 21 mm und verminderter inspiratorischer Kollaps
- · Dilatation des Truncus pulmonalis: > 25 mm oder grösser als Aorta

Wahrscheinlichkeit für das Vorliegen einer PH aufgrund der Echokardiografie

PH unwahrscheinlich	Peak TRV \leq 2.8 m/s ohne indirekte Zeichen einer PH
PH möglich	Peak TRV \leq 2.8 m/s mit indirekten Zeichen einer PH oder Peak TRV 2.9-3.4 m/s ohne indirekte Zeichen einer PH
PH wahrscheinlich	Peak TRV 2.9-3.4 m/s mit indirekten Zeichen einer PH oder Peak TRV > 3.4 m/s mit/ohne indirekte Zeichen für eine PH

Falls die Peak TRV nicht messbar (kein Signal oder kein auswertbares Signal) ist, ist eine PH nicht ausgeschlossen. In diesem Fall kommt den indirekten Zeichen entscheidende Bedeutung zu.

Kardiales MRI

Das kardiale MRI hat bei der Diagnostik/Risikostratifizierung der PH zur Bestimmung der Dimensionen der rechtsseitigen Herzhöhlen an Bedeutung gewonnen, was echokardiografisch nur bedingt möglich ist. Verschiedene MRI-Parameter werden neu zur systematischen Risikostratifizierung bei PAH eingesetzt (RVEF, RV end-systolischer VolumenIndex, Stroke Volume Index), vgl. unten.

Rechtsherzkatheter-Untersuchung

Diese Untersuchung ist der Gold-Standard für die definitive Diagnosestellung einer PH. Sie dient auch dazu, den hämodynamischen Mechanismus der pulmonalen Hypertonie zu definieren (prä- oder post.kapillär, vgl. oben) und die PH in eine klinische Gruppe einzuteilen (dazu sind aber oft weitere Untersuchungen notwendig). Eine spezifische Therapie mit pulmonalen Vasodilatatoren darf nur auf der Basis einer Rechtsherzkatheter-Untersuchung durchgeführt werden. Der Rechtsherzkatheter liefert auch wichtige prognostische Parameter, die bei der Risikostratifizierung bei PAH verwendet werden (rechtsatrialer Druck, Cardiac Index, Stroke Volume Index, gemischtvenöse Sättigung).

Ob eine Rechtsherzkatheteruntersuchung durchgeführt werden soll, hängt ab von a) der Wahrscheinlichkeit einer relevanten PH und b) den therapeutischen Konsequenzen bei Vorliegen einer definitiven Diagnose. Bei mittlerer und hoher Wahrscheinlichkeit einer PH und Hinweisen auf Risikofaktoren für eine PAH und CTEPH soll eine Rechtsherzkatheteruntersuchung erfolgen, da sich therapeutische Konsequenzen ergeben (spezifische medikamentöse Therapie bzw. Operation/Intervention/medikamentöse Therapie). Bei mittlerer oder hoher Wahrscheinlichkeit einer PH im Kontext einer Linksherzerkrankung (Gruppe 2) oder Lungenerkrankung (Gruppe 3), gibt es keine Indikation für eine spezifische medikamentöse Therapie. Die Therapie ist immer die Therapie der zugrundeliegenden Erkrankung, wozu kein Rechtsherzkathe-

ter notwendig ist. Entsprechend besteht in dieser Konstellation abgesehen von unklaren Fällen keine Indikation für einen Rechtsherzkatheter. Sinnvoll ist aber ein Follow-up mittels Echokardiografie. Bei unklarer Rechtsherzbelastung muss immer auch an einen Links-Rechts-Shunt gedacht werden. Bei entsprechendem Verdacht TEE/CT (Vorhofseptumdefekt, fehlmündende Lungenvenen) und Rechtsherzkatheter.

Ergänzende Spezialtechniken wie Vasoreaktivitätstestung, Belastung oder Volume Challenge werden in speziellen Situationen durch das Untersuchungsteam ausgewählt.

Lungenfunktionstest (mit CO-Diffusionskapazität), 6-Minuten-Gehtest und Spiroergometrie

Eine grosse Lungenfunktionsprüfung ist integraler Bestandteil der Abklärung bei möglicher PH, zum einen zur genauen Diagnose von obstruktiven und restriktiven Lungenerkrankungen (PH Gruppe 3), zum anderen zum Ausschluss einer relevanten Pneumopathie als Ursache einer PH. Die CO-Diffusionskapazität ist oft vermindert, was aber unspezifisch ist (bei PAH, aber auch Gruppe 3 und teils auch Gruppe 2).

Der 6-Minuten-Gehtest dient zur Bestimmung der Leistungsfähigkeit, der Prognose und der Verlaufskontrolle. Er wird typischerweise bei Patienten mit PAH eingesetzt werden, ist aber auch bei anderen PH-Gruppen etabliert.

Die Spiroergometrie hilft in der Differentialdiagnose von Dyspnoe/Leistungsintoleranz. Bei Verdacht auf eine PH, kann die Spiroergometrie Hinweise auf die PH Gruppe ergeben. Zudem kann so das Ausmass der funktionellen Einschränkung erfasst werden, und es werden wichtige prognostische Parameter erfasst (maximale O2-Aufnahme, ventilatorische Effizienz). Entsprechend wird die Spiroergometrie auch als Verlaufsuntersuchung bzw. Risikostratifizierung im Verlauf eingesetzt.

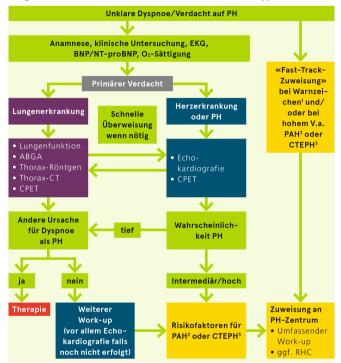
CT-Thorax mit Kontrastmittel (Lungenembolie-Protokoll oder Dual-Energy) und Ventilations-/Perfusionsszintigrafie der Lunge Diese Untersuchungen sind zur Diagnosestellung von interstitiellen Lungenerkrankungen, Lungenemphysem, Lungenembolien und anderen Pathologien hilfreich. Zum Nachweis chronischer Lungenembolien ist

die Lungenszintigrafie diagnostischer Standard, alternativ kann ein Dual-Energy CT eingesetzt werden.

Basis-Laboruntersuchungen

Bei der Abklärung hinsichtlich der Genese einer PAH gehört eine Basis-Laborabklärung dazu, welche je nach Klinik und Verdachtsdiagnose weiter ergänzt wird.

Basis-Labor:


- Blutbild
- Elektrolyte
- Leber- und Nierenwerte
- · Gerinnungsabklärung (primär Suche nach Anti-Phospholipid-Antikörper-Syndrom bei PH Gruppe 4)
- «Rheuma-Profil» (ANA, anti-Centromer, anti-SS-A)
- HIV-Test
- Hepatitis-Serologie
- TSH
- BNP oder NT-proBNP
- Arterielle Blutgasanalyse (aBGA)
- Fisenstatus

Screening von Risikogruppen für eine Pulmonale **Hypertonie**

Risikogruppen für eine PH sollten regelmässig mittels Echokardiografie gescreent werden

- Bei Sklerodermie und anderen mit PAH-assoziierten rheumatologischen Erkrankungen (SLE, RA)
- Genetisch bedingte PAH (bei direkten Familienangehörigen)
- kongenitale Shunt-Vitien

Diagnostischer Ansatz bei Verdacht auf Pulmonale Hypertonie

¹ Warnzeichen: schnelle Progression der Symptome, schwer reduzierte Leistungsfähigkeit, (Prä)Synkope bei geringer Belastung, Zeichen der Rechtsherzinsuffizienz. ² Risikofaktoren für PAH: Kollagenosen, portale Hypertonie, HIV, familiäre Belastung bezüglich PAH, ³ Risikofaktoren für CTEPH: Anamnese von Lungenembolien, intravaskuläres permanentes Device, chronisch entzündliche Darmerkrankung, essentielle Thrombozytose, Splenektomie, Tumorerkrankung, hoch dosiert Schilddrüsenhormon

Follow-up und Risikostratifikation (spezifisch für PAH etabliert)

Die Erhebung des Risikostatus ist essentiell (in der Regel alle 3-6 Monate). Die Baseline-Risikostratifikation erfolgt gemäss 3-Strata-Model (tief, intermediär, hoch) und der Follow-Up gemäss 4-Strata-Model (tief_intermediär-tief_intermediär-hoch_hoch)

Folgende Parameter sind im neuen (2022 ESC/ERS Leitlinien) 3-Strata-Model enthalten. Bei Baseline sollen allen Untersuchungen durchgeführt werden (Spiroergometrie fakultativ). Für die Verlaufsbeurteilung im 4-Strata-Model werden alle Messungen ausser Spiroergometrie und Rechtsherzkatheter standardmässig durchgeführt, letztere nur bei klinischer Verschlechterung/unklarer Situation.

- WHO-Funktionsklasse
- Klinischer Verlauf
- Klinische Zeichen der Rechtsherzinsuffizienz
- Anamnese von Synkopen
- BNP oder NT-proBNP
- FKG
- Spiroergometrie
- aBGA oder Pulsoxymetrie
- 6-Minuten-Gehtest
- Echokardiografie
- Kardiales MRI (als Alternative zur Echokardiografie)
- Rechtsherzkatheter

Baseline Risikostratifikation (2022 ESC/ERS Leitlinien)

Prognostische Fak- toren / geschätzte 1-Jahres-Mortalität	Tiefes Risiko < 5%	Intermediäres Risiko 5–20%	Hohes Risiko > 20%
Klinische Zeichen der Rechtsherzin- suffizienz	Nicht vorhanden	Nicht vorhanden	Vorhanden
Progression der Symptome	Nein	Langsam	Schnell
Synkope	Nie	Ja	Rezidivierend
WHO funktionelle Klasse	1, 11	III	IV
6MWD	> 440 m	165-440 m	< 165 m
Spiroergometrie	Peak VO ₂ > 15 ml/ min/kg (> 65% Soll) VE/VCO ₂ slope < 36	$\begin{array}{l} \mathrm{Peak}\:\mathrm{VO}_2\:\mathrm{11-15}\:\mathrm{ml/}\\ \mathrm{min/kg}\:(35-65\%\:\mathrm{Soll})\\ \mathrm{VE/VCO}_2\:\mathrm{slope}\\ 36-44 \end{array}$	Peak VO ₂ < 11 ml/ min/kg (< 35% Soll) VE/VCO ₂ slope > 44
Natriuretische Peptide	BNP < 50 ng/l NT-proBNP < 300 ng/l	BNP 50-800 ng/l NT-proBNP 300-1100 ng/l	BNP > 800 ng/l NT-proBNP > 1100 ng/l
Echokardiografie	RA-Fläche < 18 cm² Kein Perikarderguss TAPSE/sPAP > 0.32 mm/mmHg	RA-Fläche 18–26 cm ² Kein/minimaler Peri- karderguss TAPSE/sPAP 0.19- 0.32 mm/mmHg	RA-Fläche > 26 cm ² Perikarderguss TAPSE/sPAP < 0.19 mm/mmHg
Hämodynamik	RAP < 8 mmHg CI \geq 2.5 l/min/m ² SvO ₂ > 65% SVI > 38 ml/m ²	RAP 8-14 mmHg Cl 2.0-2.4 l/min/m ² SvO ₂ 60-65% SVI > 31-38 ml/m ²	RAP > 14 mmHg CI < 2.0 I/min/m ² SvO ₂ < 60% SVI < 31 ml/m ²
Kardiales MRI	RVEF > 54% SVI > 40ml/m ² RVESVI < 42 ml/m ²	RVEF 37-54% SVI 26-40 ml/m ² RVESVI 42-54 ml/m ²	RVEF < 37% SVI < 26 ml/m ² RVESVI > 54 ml/m ²

6MWD: 6-Minuten-Gehstrecke; BNP: B-type natriuretic peptide; CI: cardiac index; NT-proBNP: N-terminales proBNP; RA: rechter Vorhof; RAP: Druck im rechten Vorhof (zentralvenöser Druck); SvO2: gemischtvenöse Sättigung (Sättigung in Arteria pulmonalis); Peak VO2: maximale Sauerstoffaufnahme; RVEF: rechtsventrikuläre Auswurffraktion, RVESVI: rechtsventrikulärer end-systolischer Volumenindex; sPAP: systolischer pulmonalarterieller Druck; SVI: stroke volume index; TAPSE: tricuspid annular plane systolic excursion; VE/VCO2 slope: ventilatorische Effizienz; WHO: World Health Organization

Ziel ist es, ein «tiefes Risiko» beizubehalten bzw. zu erlangen.

Vereinfachtes 4-Strata Risikoassessment für Follow-Ups

Prognostische Faktoren	Tiefes Risko	Intermediär- tiefes Risiko	Intermediär- hohes Risiko	Hohes Risiko
Punktevergabe	1	2	3	4
WHO funktionelle Klasse	l oder II	-	III	IV
6MWD	> 440 m	320-440 m	165-319 m	< 165 m
BNP/ NT-pro-BNP	< 50 ng/l < 300 ng/l	50-199 ng/l 300-649 ng/l	200-800 ng/l 650-1100 ng/l	> 800 ng/l > 1100 ng/l

Anmerkung: Das Risiko wird kalkuliert aus der (aufgerundeten) Summe aller Punkte geteilt durch die Anzahl an Variablen

Therapie der PAH

Allgemeine Massnahmen

- Therapie der Grunderkrankung (Shunt-Vitien, HIV, Autoimmunerkrankungen usw.)
- Rauchstopp
- Grippe- und Pneumokokken-Impfung sowie Impfung gegen SARS-CoV-2
- Höhenexposition vermeiden (> 1500 m ohne O2)
- Kontrazeption/keine Schwangerschaft (meist); auf jeden Fall Information der Patientinnen über die Risiken einer Schwangerschaft
- Verzicht auf NSAR
- Psychosoziale Betreuung
- Kardiopulmonale Rehabilitation in spezialisierten Zentren

Medikamentöse Therapie allgemein

- Sauerstoff falls Hypoxämie (aBGA in Ruhe: pO₂ < 8 kPa)
- Orale Antikoagulation (bei PH Gruppe 4)
- Diuretika bei Zeichen der Hypervolämie/rechtsventrikulären Dysfunktion
- Behandlung eines Eisenmangels falls assoziiert mit Anämie

Spezifische Therapie (Vasodilatatoren)

Es existieren verschiedene Medikamente aus den drei Substanz-Grup-

pen (Beeinflussung der Endothelin-, Phosphodiesterase- oder Prostazyklin-Achse) mit nachgewiesenem Effekt auf Leistungsfähigkeit und Prognose. Ziel ist es, gemäss Risikostratifizierung ein «tiefes Risiko» zu erlangen bzw. beizubehalten. Idealerweise sollte die spezifische Therapie früh im Krankheitsverlauf begonnen werden (frühe Diagnosestellung wichtig). Kombinationstherapien (zwei bis drei Substanzklassen) sind heute Standard, werden aber immer individuell festgelegt. Die Indikationsstellung für diese Medikamente erfordert immer einen vollen Workup inklusive Rechtsherzkatheter. Alle Therapieentscheide werden am interdisziplinären PH-Board besprochen.

Operative Therapieverfahren

Bei der CTEPH (PH Gruppe 4) ist die pulmonale Thrombendarteriektomie (PEA) die Therapie der Wahl. Als Basis für die Operabilität muss eine standardisiert durchgeführte Pulmonalis-Angiografie erfolgen. Es besteht zudem die Option der Ballondilation der Pulmonalarterien für inoperable Patienten. Patienten können hierfür am Swiss-SSPH-CTEPH-Board angemeldet werden (Videokonferenz; Teilnahme aller durchführenden Zentren in der Schweiz)

Bei High-risk-Situation sollte frühzeitig über die Möglichkeit einer Lungentransplantation informiert werden, und Patienten sollen dem Lungentransplantationszentrum am Universitätsspital in Zürich zugewiesen werden

Board für pulmonale Hypertonie am KSSG

Am KSSG findet alle 4 Wochen das PH-Board zur Besprechung von Patienten mit pulmonaler Hypertonie (virtuelles Meeting) statt.

Die Anmeldung für ambulant und stationär betreute Patienten am KSSG erfolgt elektronisch im Boards-Tool (via Medfolio → Module → Boards c37 → Anmeldung) durch den Arzt, welcher den Patienten vorstellt, unter: www.hcweb.ch (Nur mit Login KSSG)

Externe Ärzte sind am Board willkommen. Dafür ist eine Anmeldung des Patienten an das Ambulatorium des Lungenzentrums mit entsprechenden Unterlagen (Echobefunde, Labor, Lungenfunktion, CT-Thorax etc., falls vorhanden) im Voraus notwendig an: lungenzentrum@kssg.ch

Quelle/Link

· Humbert M et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022 Oct 11;43(38):3618-3731., https://doi.org/10.1093/eurheartj/ehv317

Prof Dr. Micha Maeder PD Dr. Thomas Neumann Dr. Susanne Pohle Prof. Dr. Otto Schoch

Dr. Daniel Weilenmann

Herzinsuffizienz

Klassifikationen der Herzinsuffizienz

- Stadien A-D: sind klinisch von beschränkter Relevanz. A: mit Herzinsuffizienz assoziierte Risikofaktoren (z.B. Diabetes, Hypertonie). B: strukturelle Herzkrankheit ohne Symptome (z.B. asymptomatische linksventrikuläre systolische Dysfunktion nach Infarkt). C: strukturelle Herzkrankheit mit Symptomen (eigentliche Herzinsuffizienz). D: therapierefraktäres Stadium
- Akut vs. chronisch: Unterscheidung ist wichtig aufgrund des therapeutischen Ansatzes in der Akutphase. Die meisten Patienten mit akuter Herzinsuffizienz haben aber eine akute Dekompensation einer chronischen Herzinsuffizienz, deren Mechanismus die langfristige Therapie determiniert.
- Herzinsuffizienz mit eingeschränkter vs. erhaltener Auswurffraktion: ist aus therapeutischen Gründen essenziell. Dazwischen gibt es die intermediäre Klasse der Herzinsuffizienz mit leicht eingeschränkter («mildy reduced») Auswurffraktion.

Klassifikation der Herzinsuffizienz (heart failure, HF) nach linksventrikulärer Auswurffraktion (left ventricular ejection fraction, LVEF)

	HF with reduced LVEF (HFrEF)	HF with mildly redu- ced LVEF (HFmrEF)	HF with preserved LVEF (HFpEF)
	LVEF ≤ 40%	LVEF 41-49%	LVEF ≥ 50%
Demografie	jünger	intermediär	älter
Ätiologie	v.a. Koronare Herz- krankheit (grosser Infarkt), Kardiomyo- pathien	Koronare Herzkrankheit (kleinerer Infarkt) und andere	v.a. hypertensive Herz- krankheit
Mechanismus	Primär systolische LV-Dysfunktion	Variabel	Primär diastolische LV- Dysfunktion
Diagnose	Symptome ± klini- sche Zeichen plus Echokardiografie: LVEF < 40% ausrei- chend	Symptome ± klinische Zeichen plus Echokar- diografie: LVEF 41-49%	Symptome ± klinische Zeichen plus Echokardio- grafie: LVEF ≥ 50% + zusätzliche Parameter + erhöhtes BNP/NT- proBNP
Therapie	Gut definiert, ver- bessert Prognose (Ueberleben)	Weitgehend wie HFrEF	Weiterhin schlecht defi- niert; keine Therapie, die das Überleben verlängert (SGLT2-Hemmer redu- zieren das Risiko einer Hospitalisation wegen Herzinsuffizienz)

Tab. 1

BNP/NT-proBNP erhöht, ohne dass eine primäre Linksherzinsuffizienz vorliegt (BNP/NT-proBNP kann kardialen «Stress» durch extrakardiale Erkrankungen reflektieren)

- Niereninsuffizienz
- · Schwerer Infekt/schwere Entzündung
- · Lungenembolie/pulmonalarterielle Hypertonie (d.h. isolierte Rechtsherzinsuffizienz)
- · Anämie
- · Stroke/Hirnblutung
- · Hohes Alter
- · Weitere hyperdyname Kreislaufzustände (z.B. Leberzirrhose, Hyperthyreose)

BNP/NT-proBNP tief, obschon eine primäre Linksherzinsuffizienz vorliegt

- · Perakuter Prozess (BNP/NT-proBNP noch nicht erhöht)
- · Mitralstenose (Obstruktion vor dem linken Ventrikel)
- · Ausgeprägte Adipositas
- · Perikardtamponade

Tab. 2

Generelle Diagnostik der Herzinsuffizienz

Diagnose der Herzinsuffizienz beruht auf folgenden Kriterien:

- Typische Symptome (Dyspnoe unter Belastung oder in Ruhe, Leistungsintoleranz, Orthopnoe, paroxysmale nächtliche Dyspnoe, Ödeme)
- Fakultativ (im chronischen Zustand nicht immer vorhanden): klinische Zeichen, die entweder die Stauung (3. Herzton, pulmonale Rasselgeräusche, Halsvenenstauung, Ödeme) oder das verminderte Herzminutenvolumen (kühle Extremitäten) reflektieren
- Obligat objektiver Nachweis einer kardialen Dysfunktion (z.B. linksventrikuläre Dysfunktion, Klappenvitium), was obligat mittels Echokardiografie erfolgt

Das klinische Ansprechen auf eine Therapie unterstützt die Diagnose, ist aber allein nicht ausreichend für die Diagnose.

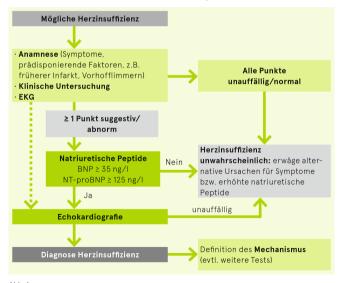


Abb. 1

Der Algorithmus in Abb. 1 (gemäss 2021 ESC Leitlinien Herzinsuffizienz) gilt

grundsätzlich für das akute wie das nicht-akute bzw. chronische Setting. Die hier dargestellte Version gilt für Patienten mit chronischen Symptomen. Die Unterscheidung ist wichtig, da unterschiedliche Cut-offs für B-type natriuretic peptide (BNP) und N-terminal-proBNP (NT-proBNP) zum Ausschluss einer Herzinsuffizienz gelten. Im akuten Setting betragen die Cut-offs für BNP und NT-proBNP 100 bzw. 300 ng/l. Zu beachten ist im Weiteren, dass BNP und NT-proBNP unspezifische, quantitative Marker eines kardialen (vor allem linksventrikulären) Stresses sind und keine Aussage über den Mechanismus machen können. Eine Echokardiografie ist daher zur Diagnosesicherung und zur Darstellung des Mechanismus der Herzinsuffizienz immer notwendig.

Ätiologie-Suche

Nach der Diagnosestellung einer Herzinsuffizienz ist es essentiell sowohl primär kardiale als auch primär nicht-kardiale Ursachen zu suchen und diese wenn möglich zu therapieren. Tab. 3 fasst die wichtigsten Ursachen und deren Abklärungen zusammen.

Ätiologie	Diagnostik	
Ischämische Ätiologie		
Koronare Herzkrankheit	EKG, kardiales MRI, Koronarangiographie, bildgebender Ischämietest, Koro-CT	
Nicht-ischämische Ätiologie		
Toxisch - Chemotherapie - Radiotherapie - Hämochromatose - Alkohol	Anamnese Anamnese Ferritin Anamnese, Labor	
Inflammatorisch · HIV · Parasiten (z.B. Chagas)	Serologie Serologie	
Infiltrativ · Systemerkrankungen (z.B. Sarkoidose, Amyloidose, Fabry) · Neoplasie	Echokardiographie, MRI, Szinthigraphie bzw. Labor Echokardiographie, CT, MRI	
Metabolische Störungen · Hormonell (z.B. Hyperthyreose, Hypothyreose, Phäochromozytom) · Nutritiv (z.B. Beriberi)	Endokrinologische Labor-Diagnostik Labor	
Genetische Erkrankungen (z.B. Kardiomyopathien)	Echokardiographie und ggf. spezifische genetische Diagnostik	
Abnorme «loading conditions»		
Hypertensive Herzkrankheit	Anamnese, Blutdruck-Messung, Echo- kardiographie	
Klappenerkankungen	Auskultation, Echokardiographie	
Perikarderkrankungen	Echokardiographie, ggf. MRI	
High-output failure (Anämie, Sepsis, AV-Fistel)	Anamnese, spezifische Tests	
Volumenüberladung (Niereninsuffizienz, iatrogen)	Anamnese	
Rhythmusstörungen		
Tachykardien (insb. Vorhofflimmern)	EKG, Langzeit-EKG	
Bradykardien	EKG, Langzeit-EKG	

Tab. 3 Mögliche Ursachen einer Herzinsuffizienz und deren Abklärung

Akute Herzinsuffizienz

- · Meist akute Dekompensation eines chronischen Prozesses
 - Dekompensation einer chronischen Herzinsuffizienz mit eingeschränkter Auswurffraktion aufgrund eines Triggers (siehe «Ursachen/Trigger für akute Dekompensation» Seite 231)
 - Dekompensation bei Herzinsuffizienz mit erhaltener Auswurffraktion, i. d. R. infolge hypertensiver Entgleisung und/oder Volumenüberladung («akute kardiovaskuläre Insuffizienz»)
- Seltener akuter Prozess (Myokardinfarkt, Rhythmusstörung, Myokarditis, akute Klappeninsuffizienz usw.)

Diagnose

Akute Herzinsuffizienz (acute heart failure, AHF) = potenziell lebensbedrohlicher Zustand, der ein schnelles und systematisches Vorgehen erfordert. Diagnostischer und therapeutischer Ansatz gemäss Abb. 2. Die Idee dieses Ansatzes ist es, differentialdiagnostisch vorzugehen und lebensrettende Massnahmen parallel sofort einzuleiten.

Kardiogener Schock = Hypotonie (systolischer Blutdruck < 90 mmHg) plus Zeichen der Hypoperfusion (klinisch: kalte Extremitäten, Oligurie, abnormer mentaler Zustand; laborchemisch: erhöhtes Laktat, metabolische Azidose, erhöhtes Kreatinin bzw. Transaminasen) trotz adäquater Füllung. Diese Zeichen des Schocks können auch bei normo- bis hypertonen Patienten auftreten (HFpEF); sie sind oft kombiniert mit einem kardialen Lungenödem. Die grosse Mehrheit der Patienten mit akuter Herzinsuffizienz ist aber normotensiv oder sogar hypertensiv.

Für alle Patienten mit vermuteter akuter Herzinsuffizienz empfohlene Tests:

- BNP oder NT-proBNP: Ausschluss Herzinsuffizienz bei Werten < 100 ng/l bzw. 300 ng/l (vgl. oben) bzw. Quantifizierung des «kardialen Stress» (prognostische Aussage).
- 12-Ableitungs-EKG: ein völlig normales EKG macht eine akute Herzinsuffizienz unwahrscheinlich. Das EKG kann andererseits Hinweise auf den Mechanismus der Herzinsuffizienz geben (akuter Infarkt, Bradykardie, Tachykardie)

- Thorax-Röntgen-Bild: Hinweise auf eine pulmonalvenöse Hypertonie einerseits und Suche nach Differentialdiagnosen andererseits
- · Lungensonografie: B-Lines als Stauungszeichen
- Laborparameter zur Suche nach Mechanismen/Co-Faktoren (Hämoglobin, TSH, CRP) und Effekten (Kreatinin, Transaminasen) der akuten Herzinsuffizienz. Dazu gehört auch das kardiale Troponin, welches als quantitativer unspezifischer Marker der myokardialen Schädigung und nicht immer als Ausdruck eines akuten Infarkts betrachtet werden muss
- Echokardiografie: für alle Patienten innert 48 Std., wenn die kardiale Pathologie nicht oder nicht ausreichend bekannt ist. Patienten im kardiogenen Schock benötigen sofort eine Echokardiografie oder einen fokussierten Herzultraschall durch einen diesbezüglich erfahrenen Notfallmediziner/Intensivmediziner unter anderem mit der Frage nach mechanischen, akut zu behandelnden Problemen (mechanische Infarktkomplikationen, Perikardtamponade, akutes Klappenvitium).

Ursachen/Trigger für akute Dekompensation

- Mvokardiale Ischämie/Infarkt
- · Inadäquate Therapie/Malcompliance
- Begleitmedikation (NSAR inkl. COX-2-Inhibitoren, Steroide, trizyklische Antidepressiva, Lithium, Kalziumkanalblocker)
- Niereninsuffizienz
- · Inadäquate Wasser-/Salzzufuhr
- · Arrhythmien (v.a. tachykardes Vorhofflimmern)
- · Progression eines Klappenvitiums
- Infektion
- · Lungenembolie
- · Hyperthyreose, Anämie
- · Toxine, kardiodepressive Substanzen

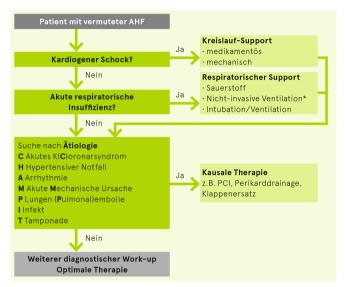


Abb. 2: Nach 2021 ESC Leitlinien Herzinsuffizienz

Therapie

Kausale Therapie, wenn immer möglich und so früh als möglich (vgl. Abb. 2 ESC Leitlinien 2021), ansonsten/zusätzlich allgemeine supportive Therapie gemäss dem klinischen und hämodynamischen Profil. Diese Therapie ist im Wesentlichen empirisch (prognostischer Effekt dieser Massnahmen nicht bewiesen). Ziel ist eine rasche Verbesserung der Symptomatik und eine klinische Stabilisierung, sodass die Therapie der chronischen Herzinsuffizienz etabliert werden kann. Da die optimale Therapiestrategie bei akuter Herzinsuffizienz unbekannt ist, ist es wichtig, dass trotz Notfallsituation möglichst viele Patienten in entsprechende Studien eingeschlossen werden. Je nach Schweregrad erfolgt die Behandlung auf Notfallstation/Normalstation oder Notfallstation/MIPS, ggf. mit invasivem Monitoring. Mit den 2021 Leitlinien wurde die frühere Kategorisierung gemäss «wet/dry» and «warm/ cold»

^{*}Bei Patienten mit akuter respiratorischer Insuffizienz im Rahmen eines akuten Koronarsyndroms: keine nicht-invasive Ventilation, sondern Intubation.

verlassen. Neu werden grundsätzlich vier klinische Syndrome unterschieden. Die Therapie wird hier nur prinzipiell besprochen, ist individualisiert und bei kranken Patienten auf der Intensivstation komplex und kann hier nicht detailliert abgebildet werden.

- Akut dekompensierte Herzinsuffzienz: Volumenakkumulation, Entwicklung oft über Tage, meist normoton. Therapie mit Diuretika und Optimierung der Therapie der chronischen Herzinsuffizienz, selten Inotropika, mechanischer Support.
- Akutes Lungenödem: In der Regel «Volumenumverteilung», schnelle Entwicklung, typischerweise bei hohem Afterload (Hypertonie, Aortenklappenstenose) und diastolischer LV-Dysfunktion, typischer Trigger: Vorhofflimmern. Therapie: Diuretika (kurzfristig), nicht-invasive Ventilation, wenn nötig Intubation, Vasodilatatoren, Rhythmusmanagement.
- Isolierte Rechtsherzinsuffizienz: relativ selten. Entweder primäre rechtsventrikuläre Dysfunktion (Kardiomyopathie, RV-Infarkt) oder gestörtes «rechtsventrikuläres-pulmonales Coupling», typischerweise bei prä-kapillärer pulmonaler Hypertonie; Therapie in Abhängigkeit vom Grundproblem sehr variabel.
- Kardiogener Schock: schwere LV-Dysfunktion mit reduziertem Cardiac Output, Hypotonie und Gewebehypoperfusion; Therapie mit Inotropika, mechanischem Support, ggf. nicht-invasive/invasive Ventilation

Allgemeine Massnahmen

- · Ruhigstellung/Sitzbett («Herzbett» im Notfallzentrum)
- · Sauerstoff, falls Hypoxämie (SpO₂ < 90%)

Medikamentöse Therapie

- Bei Schmerzen → Morphin titriert bis 0.05-0.1 mg/kg K\u00f6rpergewicht (nicht als routinem\u00e4ssige Therapie der akuten Herzinsuffizienz. nur bei Schmerzen)
- · Bei Agitation → Lorazepam 1 mg sublingual oder iv

Nitrate

· Der Effekt von Nitraten in der akuten Herzinsuffizienz ist nicht

bewiesen. Allerdings ist eine Nitrat-Therapie bei Patienten mit normalem oder erhöhtem Blutdruck (BD systolisch >110mmHg) zu empfehlen. Spray: 2 Hübe à 0.4 mg, 1 Kapsel à 0.8 mg, kann nach 5–10 Min. wiederholt werden, ggf. mehrfach, dabei Blutdruckkontrolle; ggf. iv-Verabreichung, später Nitropflaster.

- · Cave: Toleranzentwicklung
- · Ggf. Nitroprussid (MIPS)

Schleifendiuretika

Die aktuellen Leitlinien empfehlen das Diuretikum als primäres Medikament der Behandlung der akuten Herzinsuff, mit Volumenüberladung.

- Bei hyper- oder normotensiven Patienten allenfalls primäre Nitrat-Therapie (siehe oben)
- Furosemid (Lasix) bei Schleifendiuretikum-naiven Patienten als intravenöser Bolus von 20–40 mg (in den ersten 6 Std. Totaldosis < 100 mg), ansonsten ein- bis zweifache zuletzt eingenommene orale Dosis als iv Bolus. Danach kurzfristige Reevaluation des Therapieansprechens (Urinmenge >100-150 ml/h) und je nach Schweregrad resp. Ansprechen Dosis wiederholen oder Dosissteigerung, je nach Verlauf Umstellung auf orale Therapie
- Die bolusweise Verabreichung (2-3×/Tag) und die kontinuierliche Infusion sind gleichwertig.

Inotropika/Vasopressoren (gem. Notfall-/Intensivmediziner)

- · Bei ungenügender Gewebeperfusion trotz adäquatem Füllungszustand
- Manchmal unverzichtbar, generell aber sehr zurückhaltender Einsatz (erhöhtes Arrhythmie-Risiko, Provokation von Ischämie), ggf. Levosimendan anstelle von Inotropika (MIPS).

Betablocker

- Im Akutstadium nur in Ausnahmefällen indiziert (z.B. intraventrikuläre dynamische Obstruktion)
- Cave: Gabe eines Betablockers zur Kontrolle der Herzfrequenz (v.a. iv) ohne Kenntnis der LV-Funktion kann kardiogenen Schock präzipitieren
- Vorbestehende Betablocker-Therapie, wenn immer möglich nicht vollständig absetzen, evtl. temporäre Dosisreduktion

Kardioversion/Antiarrhythmika (siehe spezifische Kapitel)

- Flektrische Kardioversion bei Patienten mit atrialen oder ventrikulären Rhythmusstörungen, die als ursächlich für die akute Herzinsuffizienz angesehen werden
- Antiarrhythmika: neben Betablocker nur Amiodaron (Cordarone)
- Klasse-IB/C-Antiarrhythmika bei LV-Dysfunktion kontraindiziert

Antikoagulation/Thrombozytenaggregationshemmung

- Akutes Koronarsyndrom: gemäss Standard (siehe Kapitel «Akutes Koronarsvndrom» Seite 95)
- Vorhofflimmern/-flattern: orale Antikoagulation, Heparin (siehe Kapitel «Vorhofflimmern» Seite 247)

Mechanische Therapieoptionen

- Koronarangiografie/PCI: bei vermuteter ursächlicher grosser myokardialer Ischämie
- Notfallmässige ACBP-Operation (selten)
- Notfallmässige Operation von mechanischen Infarktkomplikationen (Papillarmuskelruptur, Ventrikelseptumdefekt, Ruptur der freien Wand)
- Notfallmässige Operation bei Endokarditis-Komplikationen
- IABP (kontraindiziert bei Aortendissektion, signifikanter Aorteninsuffizienz): kommt typischerweise im Herzkatheterlabor vor/nach PCI bei selektionierten Patienten zum Einsatz
- Perkutanes linksventrikuläres Assist Device (LVAD): Impella, kommt typischerweise im Herzkatheterlabor vor/nach PCI bei selektionierten Patienten zum Finsatz
- VA-ECMO: für Patienten im kardiogenen Schock, auch nach Reanimation mit relativ kurzer «no-flow-time». Indikationsstellung primär durch MIPS-Team, frühzeitige Diskussion der Indikation anstreben (vgl. «Indikationen für ECMO» Seite 11)
- Chirurgisches linksventrikuläres Assist Device: Diskussion mit Herzchirurgie

Chronische Herzinsuffizienz mit eingeschränkter **Pumpfunktion (HFrEF)**

Diagnose

· Diagnose-Prinzip und -Algorithmus sowie Abklärung der Ursache

- siehe «Generelle Diagnostik der Herzinsuffizienz» Seite 227.
- Echokardiografie ist das primäre Imaging-Tool; kardiales MRI bei Erstdiagnostik oft auch sinnvoll (ätiologische Abklärung Kardiomyopathie, Bestimmung Viabilität bei chronischer KHK)
- Koronarangiografie: nicht zwingend indiziert bei jeder neu diagnostizierten Herzinsuffizienz; bei unklarer Ätiologie im Verlauf (nicht akut) aber meist sinnvoll. Alternativ bei tiefem kardiovaskulären Risiko Koronar-CT zum Ausschluss einer relevanten KHK

Nicht-medikamentöse Massnahmen (nach Möglichkeit Schulung durch heart failure nurses)

- Allgemeine Massnahmen (Aufklärung von Patient und Angehörigen, Arzneimittelberatung, Diät, Bewegung und soziale Gewohnheiten)¹
- Gewichtsnormalisierung
- · Begrenzte Kochsalzzufuhr
- Höchstens begrenzter Alkoholkonsum (Mann max. 30 g/Tag; Frau max. 20 g/Tag); bei alkoholtoxischer Kardiomyopathie Alkoholkarenz
- Kardiale Rehabilitation
- · Regelmässige körperliche Bewegung bei stabiler Herzinsuffizienz

Suche nach optimierbaren kardialen Komorbiditäten/Ursachen und deren Therapie

Zusätzliche kardiale Diagnosen können sowohl die Ursache als auch Co-Faktoren der Herzinsuffizienz sein. Diese müssen gesucht und entsprechend den geltenden Therapierichtlinien behandelt werden (Tab. 3 Seite 229). Insbesondere gilt dies für Vorhofflimmern, koronare Herzkrankheit und relevante Klappenvitien (sek. Mitralinsuffizienz bei HFrEF s. unten)

^{1.} Siehe Herzinsuffizienz-Broschüre der schweizerischen Herzstiftung, www.schwachesherz.ch

Suche nach optimierbaren nicht-kardialen Komorbiditäten/Ursachen und deren Therapie

Nicht-kardiovaskulär: Anämie, Eisenmangel, Lungenerkrankung, renale Dysfunktion, Schilddrüsen-Dysfunktion (Siehe auch Tab. 3 Seite 229)

Eisenmangel

Intravenöses Eisen (Fe-Carboxymaltose) ist eine Option zur Verbesserung der Symptomatik bei Patienten LVEF < 45%, NYHA II/III, Hb < 15g und Eisenmangel (Ferritin < 100 $\mu g/I$ oder Ferritin 100–300 $\mu g/I$ und Transferrin-Sättigung < 20%). Alle hospitalisierten Patienten mit akut dekompensierter Herzinsuffizienz sollten bei einer LVEF < 50% und einem Eisenmangel mit obigen Kriterien zur Verhinderung weiterer Herzinsuffizienz-Hospitalisationen mit Fe-Carboxymaltose behandelt werden

Medikamentöse Therapie der HFrEF

Die Therapie der chronischen HFrEF besteht neu aus vier Basis-Medikamenten, die bei allen HFrEF-Patienten (LVEF ≤ 40% und NYHA ≥ II) etabliert werden sollen (Klasse I-Indikationen): ACE-I/ARNI, Betablocker, SGLT2-I, MRA. Diese sollen zunächst möglichst rasch in niedriger Dosis parallel etabliert und dann erst auftitriert werden. Der traditionelle sequentielle Einsatz bleibt möglich, wird aber von Experten nicht empfohlen. Danach müssen die Indikationen für einen ICD und/oder CRT geprüft und auch weitere von zusätzlichen Patientenfaktoren abhängige individualisierte Therapieoptionen angewendet werden. Anschliessend bestehen noch spezialisierte Optionen für therapierefraktäre Situationen.

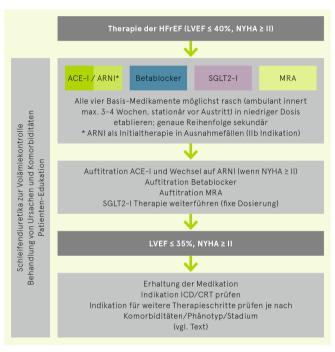


Abb. 3

Therapie der HFrEF adaptiert nach ESC Leitlinien Herzinsuffizienz 2021
ACE-I: ACE-Inhibitor, ARNI: Angiotensin-Rezeptor-Neprilysin-Inhibitor, MRA:
Mineralokortikoid-Rezeptor-Antagonist, SGLT2-I: Sodium-Glukose Kotransporter-2 Inhibitor

Diuretika

Primär Schleifendiuretika (Furosemid, Torasemid)

- Effektiv als symptomatische Therapie bei Flüssigkeitsretention
- Optimierung der Dosis durch Festlegung und Kontrolle des «Trockengewichts», d.h. individuelle Dosierung
- Wichtigste unerwünschte Nebenwirkungen: Hypokaliämie, Hypomagnesiämie, Hyponatriämie, Störungen des Säure-Basen-Haus-

- haltes, Hyperurikämie
- Nach Erreichen der Euvolämie Reduktion der Diuretika zugunsten der prognostisch wichtigen Medikamente (ACE-I/ARB/ARNI, Betablocker, SGLT2-I, MRA) auf die notwendige Minimaldosis (Diuretika verbessern die Prognose nicht). Zu beachten: auch SGLT2-I wirken leicht diuretisch.
- Wenn eGFR < 30 ml/min/1.73 m², keine Thiaziddiuretika verwenden, ausser wenn synergistisch mit Schleifendiuretika eingesetzt.
- · Begrenzte Kochsalzzufuhr
- Ungenügendes Ansprechen: Diuretika-Dosis erhöhen, evtl. mehrfach täglich verordnen, Schleifendiuretika kurzfristig mit Metolazon (2.5 5 mg/Tag) kombinieren (sequenzielle Nephronblockade), Intravenöse Schleifendiuretika (Furosemid) bei intestinaler Stauung und verminderter Resorption (siehe akute Herzinsuffizienz).

ACE-Hemmer, ACE-I

Bestandteil der Basistherapie bei allen Patienten mit HFrEF (LVEF \leq 40%, und NYHA \geq II) oder asymptomatischer linksventrikulärer Dysfunktion (LVEF \leq 40%)

- Hypotonie-Risiko minimieren: exzessive Diurese vermeiden, Diuretika-Therapie für 24 Std. reduzieren oder absetzen, ACE-Hemmer-Therapie eventuell am Abend beginnen
- Niedrig dosiert mit den übrigen drei Basis-Medikamenten (Betablocker, SGLT2-I und MRA) beginnen, und erst dann auf die Zieldosis steigern (Verdopplung der Dosis alle 14 Tage unter Kontrolle von Kalium und Kreatinin, Zieldosis gemäss Studien), schnelleres Auftitrieren im Spital möglich
- Niereninsuffizienz: Therapie nicht abbrechen, solange Anstieg des Kreatinins nicht mehr als 50% des Ausgangswertes bzw. eGFR > 25 ml/min/1.73 m2 und Kalium < 5.5mmol/l
- Kontrollen im Verlauf: BD, Nierenfunktion und Elektrolyte 1–2
 Wochen nach Therapiebeginn bzw. bei jeder Dosiserhöhung, nach 3 Monaten und dann alle 6 Monate

Angiotensin-Rezeptorblocker, ARB

- Bei Patienten mit HFrEF und Unverträglichkeit/Nebenwirkungen unter ACE-I respektive ARNI
- · Eintitrierung wie bei ACE-I

Betablocker

Bestandteil der Basistherapie bei stabiler HFrEF (LVEF ≤ 40% und NYHA ≥ II) unter Beachtung der Kontraindikationen

- Bei Herzinsuffizienz etablierte Betablocker verwenden: Carvedilol, Bisoprolol, Metoprolol-Succinat, Nebivolol
- Behandlung von Patienten mit linksventrikulärer syst. Dysfunktion (LVEF ≤ 40%) nach Myokardinfarkt auch ohne Symptome einer Herzinsuffizienz
- Es gilt das Prinzip «start low, go slow, aim high»: Beginn mit sehr niedriger Dosis zusammen mit den übrigen 3 Basis-Medikamenten (ACE-I, SGLT2-I und MRA), danach Dosissteigerung in Intervallen von 2-4 Wochen, transiente klinische Verschlechterung möglich (Schwäche, Müdigkeit)
- Bei transienter Verschlechterung der Herzinsuffizienz, v.a. in Frühphase: Dosis der Diuretika evtl. erhöhen, Betablocker-Dosis nicht weiter steigern, evtl. temporär reduzieren
- Bei symptomatischer Hypotonie zuerst Dosisreduktion der Vasodilatatoren, die nicht zwingend nötig (Nitrate), und Diuretika
- Kombination mit Amiodaron (Cordarone) oder Digoxin möglich; bei exzessiver Bradykardie zunächst Digoxin und andere bradykardisierende Medikamente stoppen
- Kontraindikationen beachten (Asthma bronchiale, bradykarde Arrhythmien); COPD und PAVK sind keine Kontraindikationen

SGLT2-Inhibitoren, SGLT2-I

Bestandteil der Basistherapie bei allen Patienten mit HFrEF (LVEF \leq 40%, und NYHA \geq II) mit und ohne Diabetes mellitus Typ 2

- Fördert Natriurese, Diurese und Glucosurie, zusätzliche wahrscheinlich direkte kardiale Effekte
- · Eine fixe Dosierung (Dapagliflozin 10mg/d oder Empagliflozin

- 10mg/d), keine Auftitration nötig
- Bei Hypotonie zuerst Reduktion der Dosis von Vasodilatatoren, die nicht zwingend notwendig sind (Nitrate), und Diuretika
- Vorsicht bei Diabetes mellitus Typ 1 (Rücksprache mit Endokrinologie-Team)
- Aufklärung der Patienten bzgl. Risiko von Genital- und Harnwegsinfekten (begünstigt durch Glucosurie), Abklärung bei entsprechenden Symptomen
- Kontrolle Kreatinin 2 Wochen nach Beginn der Therapie

Mineralokortikoidrezeptor-Antagonist, MRA

Bestandteil der Basistherapie bei allen Patienten mit HFrEF (LVEF ≤ 40%, NYHA > II)

- Spironolacton: Ziel-Dosis 12.5–25 mg/Tag (in Ausnahmefällen 50 mg/Tag)
- Eplerenon: für Patienten mit NYHA II (sonst Spironolacton). Dosis 25–50 mg. Im Gegensatz zu Spironolacton keine Gynämomastie.
- Erhöhtes Risiko von Hyperkaliämien, daher initial engmaschige Kontrolle von Kreatinin und Kalium (in Abhängigkeit von Ausgangswerten und Nierenfunktion). Kalium bis 5.5mmol/1 tolerabel. Zu erwägen ist in ausgewählten Fällen der chronische Einsatz eines Kaliumbinders (Patiromer).

Angiotensin-Rezeptor-Neprilysin-Inhibitoren (ARNI): verfügbar bisher nur Sacubitril/Valsartan

- Kombination eines ARB mit einem Neprilysin-Inhibitor (hemmt Abbau von BNP und erhöht somit die Verfügbarkeit von biologisch wirksamem BNP)
- Umstellung von allen Patienten, die unter ACE-Hemmer, Betablocker, SGLT-I und MRA stehen und weiterhin symptomatisch sind (mindestens NYHA II). ARNI als Initialtherapie in Ausnahmefällen möglich (IIb-Indikation), v.a. bei hospitalisierten, akut dekompensierten Patienten nach Rekompensation und unter Beobachtung im stationären Setting.
- Bei Umstellung von ACE-Hemmer auf ARNI muss ein 36-stündiges, ACE-Hemmer-freies Intervall beachtet werden (Gefahr des Angioödems), gilt nicht für Umstellung von ARB auf ARNI

- Aufgrund des relativ stark blutdrucksenkenden Effekts Beginn mit 2×50 mg (wenn vorher auf Zieldosis eines ACE-I oder ARB kann mit 2×100 mg begonnen werden), Ziel-Dosis 2×200 mg. Kontrolle von Nierenfunktion und Kalium analog ACE-Hemmer/ARB
- Kombination mit MRA erlaubt und erwünscht.
- Verlaufskontrolle: NT-proBNP messen (BNP-Werte nicht verwertbar als Mass der Herzinsuffizienz). Verlaufskontrolle mit natriuretischen Peptiden bei chronischer Herzinsuffizienz aber nicht empfohlen

Weitere Optionen für Patienten, die unter der Basis-Therapie noch symptomatisch sind und eine LVEF ≤ 35% aufweisen

Gemäss ESC Leitlinien 2021 müssen für all diese Patienten (auch wenn «nur» NYHA II) primär untenstehende medikamentöse/Device-/Interventions-Optionen geprüft werden.

ICD/CRT

Die kardiale Resynchronisation (CRT) ist eine wichtige Therapie-Option für HFrEF-Patienten mit LVEF \leq 35%, NYHA \geq II und einem Linksschenkelblock (bester Effekt bei QRS- Breite \geq 150ms, Indikation aber auch gegeben bei QRS-Breite 130–149ms) respektive mit einer QRS-Breite \geq 150ms ohne Linksschenkelblock.

Ein interner kardialer Defibrillator (ICD) ist indiziert bei nach dreimonatiger medikamentöser Therapie persistierenderLVEF \leq 35%, NYHA \geq II, insbesondere bei einer ischämischen Ursache der Herzinsuffizienz (Indikation I). Bei einer nicht-ischämischen Genese besteht eine Klasse IIa Indikation, wobei die Indikation v.a. für jüngere Patienten mit weniger schweren Komorbiditäten gut ist. Details zu ICD/CRT s. Kapitel «ICD und CRT» Seite 278.

Ivabradin

- Senkt Herzfrequenz via selektivem Effekt auf den Sinusknoten, kein Effekt bei Vorhofflimmern.
- Option bei Patienten mit LVEF ≤ 35%, Sinusrhythmus, NYHA ≥ II und Therapie mit ACE-Hemmer, SGLT2-I und MRA, die Betablocker nicht tolerieren (es muss versucht worden sein!) und eine Herzfrequenz ≥ 70/Min. oder trotz maximaler Betablocker-Thera-

pie eine Herzfrequenz ≥ 70/Min. aufweisen (Reduktion des kombinierten Endpunkts kardiovaskulärer Tod und Rehospitalisationen wegen Herzinsuffizienz).

- Dosis 2× 5 mg/Tag, maximal 2× 7.5 mg (in Abhängigkeit von Herzfrequenz), bei Bradykardie Reduktion auf 2× 2.5 mg/Tag
- · Unerwünschte Effekte: Bradykardie, Phosphene

Digoxin

- Reservemedikament, keine Daten für Verbesserung der Prognose (zudem in der Schweiz ab 2022 kaum noch erhältlich)
- Frequenzkontrolle bei Patienten mit HFrEF und Vorhofflimmern
- Symptomatische Patienten (NYHA II-IV) mit HFrEF im Sinusrhythmus trotz optimaler Therapie (gemäss Algorithmus)
- Dosierung je nach Alter und Nierenfunktion: 0.125 mg/Tag, manchmal nur 3×/Woche
- Initial Spiegelkontrolle (maximal 0.8 ng/ml, bei h\u00f6heren Spiegeln nicht wirksamer, aber toxisch)

Vericiguat

- Stimulator der löslichen Guanylatzyklase, vermittelt Vasodilatation und antiinflammatorische Effekte
- Reduziert die Herzinsuffizienz-Re-Hospitalisationsrate nach einer Hospitalisation wegen Herzinsuffizienz (Klasse IIb-Empfehlung)
- Soll erst nach guter Rekompensation eingesetzt werden (bei sehr hohen NT-proBNP – ca. 8000 ng/l und mehr – potentiell kontraproduktiver Effekt)
- Kontraindiziert bei gleichzeitiger Verabreichung von Phosphodiesterase-Inhibitoren und anderen Guanylatzyklase-Stimulatoren (Vorsicht bei Langzeitnitraten)

Therapie der sekundären Mitralinsuffizienz

Bei trotz ausgebauter medikamentöser Herzinsuffizienztherapie (inkl. CRT falls indiziert) persistierender relevanter sekundärer Mitralinsuffizienz mit zusätzlichen Outcome-Echokriterien («COAPT-Kriterien»): Besprechung eines perkutanen Mitraklappeneingriffes im Herzteam. Siehe auch Kapitel «valvuläre Herzerkrankungen».

Pulmonalvenenisolation

Option für selektionieren Patienten mit HFrEF und paroxysmalem oder permanentem Vorhofflimmern, siehe Kapitel «Vorhofflimmern» <u>Seite</u> 247

Weitere Optionen bei fortgeschrittener HFrEF (advanced heart failure)

Bei jüngeren Patienten mit schwerer Herzinsuffizienz (advanced heart failure, Definition und Kriterien s. ESC Leitlinien Herzinsuffizienz 2021) sollte eine Mitbeurteilung durch das tertiäre Herzinsuffizienz-Zentrum bezgl. Evaluation eines links-ventrikulären Assist-Devices resp. einer Herztransplantation erfolgen.

Nicht empfohlene bzw. kontraindizierte Massnahmen bei HFrEF

- Darbepoetin und andere Erythropoese-stimulierende Substanzen: nicht indiziert
- Statine: nicht indiziert zur Behandlung der Herzinsuffizienz per se; indiziert bei zugrunde liegender Koronarer Herzkrankheit
- Orale Antikoagulation: indiziert bei Vorhofflimmern, Klappenprothese etc., aber nicht wegen Herzinsuffizienz per se
- · Renin-Inhibitoren: keine Indikation
- Diltiazem und Verapamil kontraindiziert bei HFrEF (negativ inotrop);
 Amlodipin kommt infrage, falls Blutdruck mit Standard-Therapie nicht ausreichend behandelt werden kann
- Zentrale Schlafapnoe: BIPAP-Therapie kontraindiziert (gilt nicht für CPAP, weder für die Therapie von obstruktiver noch zentraler Schlafapnoe)
- NSAR und Coxibe kontraindiziert

Herzinsuffizienz mit leicht eingeschränkter Pumpfunktion (HFmrEF)

Pathophysiologie und Diagnose

Siehe Tab. 1 «Klassifikation der Herzinsuffizienz» Seite 226

Therapie

Es gibt Hinweise, dass Patienten mit HFmrEF positiv auf eine medikamentöse «HFrEF»-Therapie ansprechen. Entsprechend sind folgende

Medikamenten-Klassen nun in den ESC Leitlinien Herzinsuffizienz 2021 mit einer Indikations-Klasse IIb versehen worden:

- ACE-I/ARB/ARNI
- Betablocker
- MRA

Nach der Publikation der ESC-Leitlinien 2021 wurden in zwei Studien übereinstimmend positive Effekt von Empagliflozin und Dapagliflozin auf den kombinierten Endpunkt kardiovaskulärer Tod und Herzinsuffizienz-Hospitalisation (getrieben durch Reduktion der Herzinsuffizienz-Hospitalisationen) bei Patienten mit HFmrEF (und HFpEF) nachgewiesen, sowohl für Diabetiker als auch für Nicht-Diabetiker. Dies wird sicher in einer positiven Empfehlung in den nächsten Leitlinien resultieren. Für Diabetiker mit HFmrEF können diese Medikamente entsprechend verordnet werden. Für Nicht-Diabetiker ist die Aufnahme auf die Spezialitätenliste hängig.

Herzinsuffizienz mit erhaltener Pumpfunktion (HFpEF)

Pathophysiologie und Diagnose

Siehe Tab. 1 «Klassifikation der Herzinsuffizienz» <u>Seite 226</u> (für Details Spezialliteratur)

Therapie

Prinzip

Es gibt keine Therapie, welche das Überleben dieser Patienten verbessert. Die Therapie zielt darauf ab, Symptome zu verbessern und Hospitalisation zu verhindern, dies durch optimale Behandlung der kardiovaskulären Grundkrankheit (Hypertonie, Diabetes, Koronare Herzkrankheit) und von Co-Morbiditäten (Übergewicht, Schlafapnoe, Niereninsuffizienz) sowie Medikamente, die in der klinischen Erfahrung wirksam sind und/oder in Studien gewisse Effekte gezeigt haben. In der Praxis muss ausprobiert werden, von welchen Medikamenten ein Patient symptomatisch am besten profitiert.

- · Wichtig:
 - · Vermeiden/Behandlung von Tachyarrhythmien (Vorhofflimmern)
 - · Vermeiden von Volumendepletion und Volumenüberladung

Diuretika

Symptomatisch oft wirksam. Cave: schmale therapeutische Breite aufgrund einer steilen enddiastolischen Druck-Volumen-Beziehung des linken Ventrikels bei HFpEF Stauung (Cave: Volumendepletion)

Empagliflozin und Dapagliflozin

Nach der Publikation der ESC-Leitlinien 2021 wurden in zwei Studien übereinstimmend positive Effekt von Empagliflozin und Dapagliflozin auf den kombinierten Endpunkt kardiovaskulärer Tod und Herzinsuffizienz-Hospitalisation (getrieben durch Reduktion der sowie auf die Herzinsuffizienz-Hospitalisationen) bei Patienten mit HFpEF (und HFmrEF) nachgewiesen, sowohl für Diabetiker als auch für Nicht-Diabetiker. Dies wird sicher in einer positiven Empfehlung in den nächsten Leitlinien resultieren. Für Diabetiker mit HFpEF können diese Medikamente entsprechend verordnet werden. Für Nicht-Diabetiker ist die Aufnahme auf die Spezialitätenliste hängig.

Digoxin

Option bei tachykardem Vorhofflimmern zur Frequenzkontrolle, im Sinusrhythmus Nutzen unklar. Keine Empfehlung in den Leitlinien, zudem Medikament in der Schweiz kaum mehr erhältlich.

Spironolacton

Kein Effekt auf Mortalität, aber Reduktion des Risikos von Re-Hospitalisationen, allerdings erhöhtes Risiko von Niereninsuffizienz und Hyperkaliämie. Studiendaten leider nicht schlüssig, keine Empfehlung in den Leitlinien.

Amiodarone

Rhythmuskontrolle bei Episoden von Vorhofflimmern mit konsekutiven Dekompensationen

Prof Dr. Micha Maeder, Dr. Marc Buser, Dr. Gian-Reto Kleger, Prof. Dr. Hans Rickli, Dr. Jörg Scheler

Vorhofflimmern

Definition

Unkoordinierte Vorhofserregung mit einer Vorhoffrequenz von 300-600/min. Das Oberflächen-EKG zeigt eine absolute Arrhythmie und keine eindeutigen P-Wellen mit Andauern >30 Sekunden. P-Wellen bzw. eine scheinbar organisierte Vorhofsaktivität kann bei fibrotisch veränderten Vorhöfen oder unter antiarrhythmischer Therapie (Amiodaron) erkennbar sein. Diese weisen dann eine andere Morphologie als z.B. bei typischem Vorhofflattern auf.

Epidemiologie

Die Prävalenz von Vorhofflimmern (VHF) liegt bei 1–2% der Gesamtbevölkerung und ist wesentlich altersabhängig (0.5% bei 40- bis 50-Jährigen, 5–15% bei über 80-Jährigen).

Ursachen

- Akut (meist reversibel): Hyperthyreose, Alkohol, Drogen (Kokain), akute Lungenembolie, Katecholamin getriggert (nach Operationen, bei Infekten), Myokardinfarkt
- Chronisch (häufig irreversibel): langjährige arterielle Hypertonie oder Diabetes, Klappenvitien
- Genetisch

Klassifizierung

- · Erstdiagnostiziert: Erstmanifestation eines VHF
- · Paroxysmal: selbstlimitierend oder Kardioversion < 7 Tage
- · Persistierend: anhaltend > 7 Tage
- · Lang anhaltend persistierend: anhaltend > 1 Jahr
- Permanent: keine eigentliche zeitliche Einteilung, sondern entspricht Behandlungsstrategie: VHF wird akzeptiert, keine (weiteren)
 Versuche einer Rhythmuskontrolle
- Valvulär: mittelschwere oder schwere Mitralklappenstenose (siehe <u>Seite 305</u>), mechanische Klappenprothese (siehe <u>Seite 310</u>)
 - Therapie mit Vitamin K-Antagonist; NOAK kontraindiziert

Symptom Klassifikation

- · EHRA 1: keine Symptome
- · EHRA 2a: milde Symptome (Alltagsaktivität nicht beeinträchtigt)
- EHRA 2b: moderate Symptome (Alltagsaktivität nicht beeinträchtigt, jedoch Patient durch Symptome gestört)
- · EHRA 3: schwere Symptome (Alltagsaktivität beeinträchtigt)
- · EHRA 4: schwerste Symptome (Alltagsaktivität verunmöglicht)

Grundlegende Abklärungen

- · Dokumentation Vorhofflimmern mit Ruhe-EKG
- Klinische Untersuchung: kardial kompensiert? Hämodynamisch stahil?
- Labor: Blutbild, Gerinnung, Leber-/Nierenfunktion, Elektrolyte, TSH
- TTE: strukturelle Herzerkrankung, Kontraindikation NOAK (Mitralstenose)? Volumen linker Vorhof?
- · Evtl. Holter-EKG: Frequenzkontrolle? Pausen/Bradykardien?
- Begleitfaktoren: Aktivität, Alkoholkonsum, Adipositas, Einstellung arterielle Hypertonie, OSAS, Diabetes mellitus

Die wichtigsten Fragen

- · Klassifikation: Paroxysmal oder persistierend? Beschwerden?
- · Therapiestrategie: Frequenz- oder Rhythmuskontrolle?
- Andauern des VHF? Wenn sicher (möglichst dokumentiert) <48h: Elektrische oder medikamentöse Kardioversion nach umgehendem Beginn einer Antikoagulation ohne weitere Abklärung möglich.
 - > 48 Std oder unbekannt: Vor Kardioversion TEE/CT (intrakardiale Thromben?) oder therapeutische Antikoagulation über 3 Wochen zwingend.
- Thromboembolieprophylaxe indiziert? Siehe «Indikation zur oralen Antikoagulation» Seite 251

Vorgehen bei Vorhofflimmern auf Notfallstation

Frequenz- oder Rhythmuskontrolle

Alle grossen klinischen Studien zeigen bisher keinen klaren Überlebensvorteil einer Rhythmuskontrolle gegenüber einer Frequenzkontrolle, was durch aktuelle Studien aber zunehmend infrage gestellt wird. Es scheint jedoch, dass die frühe Rhythmisierung von Patienten mit neu aufgetretenem Vorhofflimmern in Bezug auf die weitere kardiovaskuläre Morbidität Vorteile bringt. Zudem sind jüngere, symptomatische Patienten in allen Studien unterrepräsentiert. Eine Rhythmuskontrolle ist für jüngere oder symptomatische Patienten und für Patienten mit neu aufgetretenem Vorhofflimmern sinnvoll. Bei diffusem Beschwerdebild/ Unklarheit, ob Vorhofflimmern für die Symptome verantwortlich ist → «Vorhofflimmern-Ferien» siehe nächster Abschnitt.

Klinische Probleme

- Symptomkorrelation: Bei paroxysmalem VHF werden häufig Palpitationen bemerkt. Bei persistierendem VHF eher unspezifische Symptome (Leistungsintoleranz, Müdigkeit). Patienten mit persistierendem VHF haben jedoch auch häufiger extrakardiale (Hypertonie, OSAS) und kardiale Erkrankungen (KHK, hypertensive Herzkrankheit usw.), sodass die klinische Relevanz von insbesondere normokardem VHF unklar ist. In dieser Situation empfehlen sich «Vorhofflimmer-Ferien»: Elektrokonversion, ggf. vorgängig Amiodaron-Therapie (Reduktion Rezidivwahrscheinlichkeit) und Reevaluation der Symptome im Sinusrhythmus (evtl. Ergometrie vor/nach FKV)
- Tachykardes VHF: kann zu einer linksventrikulären Dysfunktion führen
- Tachykardes VHF mit hypertensiven BD-Werten: im Alter schlecht toleriert; oft Ursache einer akuten Herzinsuffizienz (auch ohne relevante strukt. Herzerkrankung; diastolische Dysfunktion!)
- Bradykardes VHF: oft von Schwindel und Synkopen begleitet;
 Cave: Sonderform des Sick-Sinus-Syndroms: «Brady-Tachy-Syndrom» bei medikamentöser Therapie des vermeintlich nur tachykarden VHF (Betablocker-Augentropfen wirken auch systemisch!)
- · Postoperativ erstmalig aufgetretenes VHF: Nach Herzchirurgie

ist die Wertigkeit einer langfristigen Thromboembolieprophylaxe und/oder antiarrhythmischen Therapie unklar. Bei VHF nach nicht-herzchirurgischer Operation und bei als «sekundär» beurteiltem Vorhofflimmern (Fieber, Infekt, akuter Myokardinfarkt, etc.) richtet sich die Indikation zur Thromboembolieprophylaxe aber einzig nach dem CHA2DS2-VASc Score und sollte nicht generell vorenthalten werden.

 Asymptomatisches VHF: relativ häufig von TIA und ischämischem Hirnschlag begleitet. Cave: nach Pulmonalvenenisolation (PVI) möglich (auch bei vormals symptomatischen Patienten) → Thromboembolieprophylaxe nach PVI in Abhängigkeit des CHA₂DS₂-VASc Scores weiterführen.

Indikation zur oralen Antikoagulation (OAK)

Nach einer Kardioversion ist eine Thromboembolieprophylaxe mit vorzugsweise NOAK oder sekundär VKA immer für 4 Wochen (eingeschränkte Vorhofskontraktion: «Stunning») und nach einer Pulmonalvenenisolation (Endothelläsionen im linken Vorhof) für 3 Monate indiziert. Die Indikation für eine langfristige Thromboembolieprophylaxe mit vorzugsweise NOAK oder sekundär VKA richtet sich nach dem CHA₂DS₂-VASc Score. Aspirin hat in dieser Indikation keinen Stellenwert mehr

CHA₂DS₂-VASc Score (max. 9 Punkte, Alter gibt 0, 1 oder 2 Punkte)

Risikofaktor	Score
Herzinsuffizienz/LV-Dysfunktion	1
Art. Hypertonie Alter ≥ 75 Jahre	2
Diabetes mellitus	1
Stroke/TIA/andere Thromboembolie	2
Gefässerkrankung (KHK, PAVK)	1
Alter 65-74 Jahre	1
Weibliches Geschlecht	1
Maximaler Score	9

Indikation zur oralen Antikoagulation gemäss CHA2DS2-VASc Score

Bei bestehender Kontraindikation für eine orale Antikoagulation ist eine Evaluation eines interventionellen Vorhofsohrverschlusses sinnvoll.

Neue orale Antikoagulantien (NOAK)

Effizienz/Sicherheit, Indikation

- Mindestens gleich gute Effizienz im Vergleich zu Vitamin K-Antagonisten (VKA) d.h. Phenprocoumon (Marcoumar) bzw. Acenocoumarol (Sintrom)
- Verbesserte Sicherheit: weniger Hirnblutungen, weniger schwere und lebensbedrohliche Blutungen (im Vergleich mit VKA)
- Gleichwertige Indikation (Klasse I) zur Thromboembolieprophylaxe bei VHF-Patienten wie VKA; grundsätzlich wird den NOAKs unter Beachtung der Kontraindikationen (schwere Niereninsuffienz, mechanische Herzklappe, mittel- oder hochgradige Mitralstenose) der Vorzug gegeben

Zu beachten gilt

- Compliance kann die Wirksamkeit von NOAKs erheblich beeinträchtigen (kurze Halbwertszeit, kein Monitorring); aber Compliance auch bei Vitamin K-Antagonisten (VKA) nicht optimal
- Kombination mit Thrombozytenaggregationshemmern bei Patienten mit Vorhofflimmern nach ACS und/oder Stenting: Siehe Kapitel «ACS», Grafik Seite 106
- Risiko für gastrointestinale Blutungen etwas erhöht bei Rivaroxaban 20 mg und Dabigatran 150 mg 2x/Tag
- Mittelschwere Niereninsuffizienz: regelmässige Kreatininkontrolle nötig (Dabigatran höchste Kummulationsgefahr da 80% renal eleminiert). Die

Dosis gemäss Zulassung richtet sich nach der Kreatininclearence und nicht nach der eGFR

- Schwere Niereninsuffizienz: kaum Daten (weder für NOAK noch für VKA): Apixaban und Edoxaban whs. die besten Optionen
- · Quantifizierung der antikoagulatorischen Effektes (Anti-Faktor-Xa Aktivität) im Notfall (Blutung, Operation) möglich, aber nicht generell zur Therapiekontrolle
- Nach barjatrischer Chirurgie wenig Daten hinsichtlich Resorption von NOAK. Primär Verwendung von VKA oder von Apixaban unter Kontrolle der Anti-Faktor-Xa Aktivität
- · Therapieoption im Falle einer Blutung siehe «Hämostasiologische Massnahmen» Seite 181
- Umstellung VKA auf NOAK: Beginn NOAK sobald INR ≤ 2

Blutungsrisiko: HAS-BLED Score (untersucht für Blutungsrisiko unter Warfarin)

HAS-BLED Score ≥ 3 = Blutungsrisiko erhöht. Patienten sollten, wenn indiziert, dennoch antikoaguliert werden. Im Vordergrund steht eine optimale Kontrolle der modifizierbaren Blutungsrisikofaktoren (unkontrollierte arterielle Hypertonie, unter VKA optimales INR Monitoring oder Wechsel auf NOAK, Verzicht auf NSAR, Reduktion Alkoholkonsum).

Buchstabe	Klinisches Charakteristikum	Punkte	
Н	Art. Hypertonie	1	
А	Abnorme Nieren*- und Leberfunktion** (je ein Punkt)		
S	Schlaganfall		
В	Blutung		
L	Labiler INR	1	
Е	Alter > 65 Jahre	1	
D	Drogen und/oder Alkohol (je ein Punkt)		
		Max. 9 Punkte	

^{*} Chronische Dialyse oder Nierentransplantation oder Serumkreatinin ≥ 200 µmol/l

^{**} Chronische hepatische Erkrankung oder biochemische Evidenz einer signifikanten hepatischen Störung (z.B. Bilirubin > 2× und ASAT/ALAT > 3× Normwert)

Vorgehen bei Indikation für Thrombozytenaggregationshemmung und oraler Antikoagulation

Bei stabiler KHK (keine Angina pectoris, keine akute Ischämie und/oder Stentimplantation < 12 Monate): OAK (**NOAK**, VKA) Monotherapie (siehe auch Kapitel Chronisches Koronarsyndrom <u>Seite 120</u>). Nach einem ACS/PTCA gemäss Leitlinien ACS (siehe Grafik <u>Seite 106</u>).

Medikamente zur Frequenzkontrolle

Betablocker

- po: z.B. Bisoprolol (Concor) 5–10 mg
- iv: z.B. Metoprolol (Beloc) langsam 1-mg-weise iv, Zieldosis 5 mg iv, dann auf po wechseln; in der Akutsituation Bolus 5 mg langsam iv, repetierbar alle 10 Min. bis max. 15 mg, KI: eingeschränkte LVEF

Ca-Antagonisten

(Wenn möglich immer po, da iv negativ inotrop) Cave: schlechte LVEF

- po: Diltiazem (Dilzem) po 3× 60 mg/Tag, später bis 2× 120 mg/Tag
- iv: falls nötig Diltiazem 0.25 mg/kg Bolus iv, evtl. wiederholen, Dauerinfusion 5–15 mg/Std. (Cave: Herzinsuffizienz)
- · Isoptin immer po geben, max. Dosis 480 mg/Tag

Digoxin (bei Herzinsuffizienz)

 (0.25-) 0.5 mg Bolus iv, evtl. wiederholen, maximal 1 mg (in 3 Dosen), dann po weiter (Cave: Hypokaliämie, Niereninsuffizienz)

Kardioversion

Eletrische Kardioversion (EKV)

- · Schnellste und effektivste Konversion des VHF
- Indiziert bei symptomatischen Patienten mit Arrhythmiebeginn < 48 Std. oder suffizienter Antikoagulation ≥ 3 Wochen/TEE oder hämodynamischer Instabilität
- EKV (synchronisiert!) in Kurznarkose/Analgosedation mit 200 J (biphasisch)

Medikamentöse Kardioversion

- · Primär oder wenn mit EKV kein Erfolg
- Alle unten angeführten Antiarrhythmika können bei nicht erfolgreicher EKV angewendet werden. EKV nach aufdosierter Medikamentengabe wiederholen

Medikamente (Klasse)	Dosis	Erfolg	olg Kontraindikationen/Warnhinweise	
Amiodaron (Cordarone) (III)	150-300 mg über 15 Min. iv maximal 1200 mg/24h Langsamer Wir- kungseintritt, sicher bei einge- schränkter LV- Funktion	ca. 70%	KI: SA Block, AV-Block ≥ II* Mobitz Bei Dauertherapie und VKA initial INR eng- maschig kontrollieren (Interaktion) TSH-Kontrollen	
Flecainid (Tambocor) (Ic)	200mg (<70kg) oder 300mg po 2 mg/kg iv über 10 Min. (max. 150 mg)	ca. 80%	KI: KHK, Herzinsuffizienz Bei Dauertherapie immer nur mit Betablocker gemeinsam geben (CAVE Organisation in ein Vorhofflattern mit 1:1 Überleitung auf den Ventrikel, was hämodynamisch häufig schlecht vertragen wird bzw. Kammerflimmern induzieren kann)	
Vernakalant (Brinavess)	Tang/kg iv über 10 Min. (2. Dosis nach 15 Min.; 2 mg/kg) max. 5 mg/kg/ 24h		KI: hämodynamische Instabilität, NYHA III/IV, ACS, schwere Aortenstenose, BDsys < 100 mmHg, QT > 440 ms, AV-Block ≥ II (Mobitz) Blutdruck und Herzfrequenzabfall, v.a. während/bis 15 Min. nach Infusionsende möglich (häufiges BD-Monitoring!): Therapieabbruch unabhängig von Symptomen Mögliche EKG-Veränderungen: Sinus-Bradykardie/-Pausen, SA-/AV-/Schenkel-Blockierungen, QRS-, QT-Intervall Verlängerungen Keine Dosisanpassung bei Nieren-/Leberdysfunktion, ältere Patienten Rhythmusüberwachung über 2 Std.	

Medikamente zur Rhythmuskontrolle

Keine strukturelle Herzerkrankung

- Betablocker
- · Antiarrhythmika:

- Flecainid (Tambocor) 2× 50–150 mg po immer mit Betablocker kombinieren (Vorhofflimmern kann durch Flecainid in Vorhofflattern organisieren und 1:1 auf die Ventrikel übergeleitet werden, was hämodynamisch häufig schlecht vertragen wird bzw. Kammerflimmern induzieren kann).
- Dronedarone (Multaq) 2× 400 mg po. Komplexes Interaktionspotential (NOAK, Digoxin, Calciumantagonisten): Interaktionscheck. KI: kürzliche kardiale Dekompensation, NYHA III/IV, CrCI < 30ml/min, QTc>500ms
- Sotalol (Sotalex) 2× 80–160 mg po (Cave: Torsades-de-pointes bei Hypokaliämie und QTc-Verlängerung, Niereninsuffizienz)

Strukturelle Herzerkrankung

- · Antiarrhythmika:
 - Amiodaron (Cordarone). Regelmässige Kontrolle der Leberund Schilddrüsenwerte, optimaler UV Schutz
 - Sotalol (Sotalex) 2×80-160 mg po (falls keine Herzinsuffizienz und keine Niereninsuffizienz vorhanden; Cave: erhöhtes Risiko von Torsades-de-pointes bei Hypokaliämie und QTc-Verlängerung)
 - Dronedaron (Multaq) 2× 400 mg po. Komplexes Interaktionspotential (NOAK, Digoxin, Calciumantagonisten): Interaktionscheck. Kl: kürzliche kardiale Dekompensation, NYHA III/IV, CrCl < 30ml/min. QTc > 500ms

Ablationsbehandlung bei Vorhofflimmern (mit Rhythmologen besprechen)

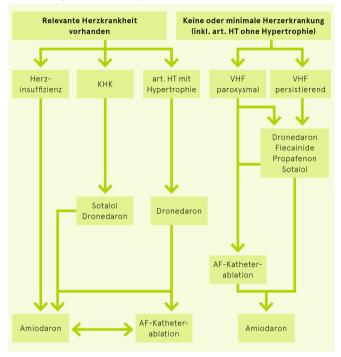
Pulmonalvenenisolation (PVI)

- Symptomatisches Vorhofflimmern oder Nebenwirkungen der Antiarrhythmika-Therapie, Tachykardie induzierte Kardiomyopathie, gewisse Patienten mit Herzinsuffizienz
- Grundsätzlich bessere Erfolgsrate bei paroxysmalem VHF und je weniger strukturelle Herzerkrankung vorhanden
- Langzeiterfolg etwa 70–80%; 20–30% der Patienten benötigen aber Zweit- oder Drittinterventionen; Komplikationsrate insgesamt 2–3%: Leistenkomplikationen (Hämatom, AV-Fistel, Pseudo-

aneurysma) 1–2%, Perikardtamponade 1–2%, Rest < 1%: TIA/Insult, Oesophagoatriale Fistel¹, Pulmonalvenenstenose² < 0.5%.

AV-Knoten-Ablation nach vorgängiger Schrittmacherimplantation

- Nach Implantation eines Schrittmachers wird der AV-Knoten abladiert. Geeignet für ältere Patienten mit Nebenwirkungen der Antiarrhythmika-Therapie oder mit Tachykardie-Bradykardie-Syndrom (frequenzsenkende Medikamente sollen tachykarde Episoden verhindern, führen aber zu Bradykardien und AV-Überleitungsstörungen)
- Vorteil: Effektive Frequenzkontrolle; Antiarrhythmika können abgesetzt werden
- Nachteil: Schrittmacherabhängigkeit, dyssynchrones Pacing im RV, deshalb bei EF < 40% vor Knoten-Ablation CRT-Implantation nötig


Hybridtherapie

 Darunter versteht man eine rechtsatriale Isthmusablation bei Vorhofflattern, wenn Vorhofflimmern unter medikamentöser Therapie zu einem Vorhofflattern organisiert

Symptome Tage bis Wochen nach PVI: (bedingt durch Luftembolie, Mediastinitis) Fieber, Sepsis, Insult und Schluckbeschwerden. Hohe Letalität daher rasches Handeln: Computertomografie mit oralem und iv Kontrastmittel, KEINE Gastroskopie (Luftembolie!), Involvierung Rhythmologie, Chirurgie und Infektiologie:. Nüchtern lassen, hochdosiert PPI, antibiotische Breitbandtherapie.

^{2.} Symptome oft Monate nach PVI: Dyspnoe, Husten, Hämoptysen, rez. Pulmonale Infekte.

Erhaltung des Sinusrhythmus bei VHF

Quellen/Links

- Hindricks G et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation. <u>EHJ. 2021 Feb 1;42(5):373-498.</u>
- Stiell I et al. CAEP Acute Atrial Fibrillation/Flutter Best Practices Checklist. CJEM 2018;20(3):334-342.

Dr. Florian Franzeck, Prof. Dr. Peter Ammann,

Dr. David Altmann, Dr. Dr. Roman Brenner, Dr. Jörg Scheler

Supraventrikuläre Rhythmusstörungen (SVT)

Einteilung

Reentry-Tachykardien

- AV-Knoten-Reentry-Tachykardie (AVNRT)
 - Schmalkomplextachykardie, Schenkelblockaberranz möglich
- AV-Reentry-Tachykardie (AVRT)
 - Wolff-Parkinson-White (WPW) Syndrom: antegrad leitende akzessorische Bahn (Delta-Welle im Sinusrhythmus, evtl. erst. bei höheren Herzfrequenzen sichtbar!)
 - · Orthodrome Tachykardie möglich (antegrad über AV-Knoten): Schmalkomplextachykardie
 - · Antidrome Tachykardie (antegrad über akzessorische Bahn): immer Breitkomplextachykardie da max. Präexzitation!
 - · Concealed WPW: nur retrograd leitende akzessorische Bahn (keine Delta-Welle im Sinusrhythmus)
 - · Nur orthodrome Tachykardie möglich

Alle SVT können mit Schenkelblockaberranz und damit als Breitkomplextachykardie (i.d.R. typisches Schenkelblockbild) auftreten. Eine antidrome AVRT präsentiert sich immer als Breitkomplextachykardie bei antegrader Leitung über akzessorische Leitungsbahn.

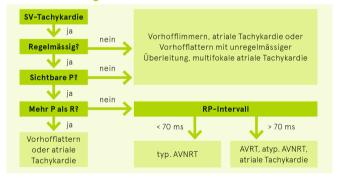
Vorhofflattern

- Typisch = cavotrikuspidal-gängig (rechtsatrial): meist counterclockwise (negative P-Wellen i.d. inferioren Ableitungen)
- Atypisch = nicht cavotrikuspidal-gängig (rechts- oder links-atrial). Häufig nach atrialer Intervention (Katheter oder chirurgisch), operativ korrigierte kardiale Vitien

Atriale Tachykardie (fokal, multifokal, mikroreentry)

P-Wellenmorphologie anders als im Sinusrhythmus (z.B. negativ in den inferioren Ableitungen)

Klinische Präsentation


Palpitationen, «Frog-sign» (s. unten), Panikattacke, Schwindel, Angina pectoris, Synkope

Anamnese

Seit wann, wie oft. Start/Ende. Dauer: plötzlicher Beginn und Ende (On-/Off-Phänomen), Klopfen im Hals («Frog-sign»: atriale Kontraktion gegen geschlossene AV-Klappen). Terminierung durch vagale Manöver bei Reentry-Tachykardien. Atriale Tachykardie: plötzlicher oder allmählicher Start/Ende. Adenosin unterbricht Reentry-Tachykardie, selten auch atriale Tachykardie.

Immer Dokumentation der Tachykardie mit 12-Ableitungs-EKG anstreben. EKG-Dokumentation aller Massnahmen während Tachykardie: vagale Manöver, bei Auftreten/Verschwinden von Schenkelblöcken oder der Injektion von Antiarrhythmika.

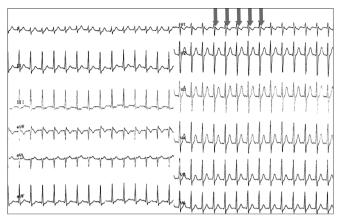
Differentialdiagnostik SVT

Therapie allgemein

- Hämodynamisch instabil: Elektrokardioversion 200 J
- Stabil
 - · Vagale Manöver
 - Adenosin 6–18 mg iv schnell in herznahe Vene und Nachspülen mit 10-20 ml NaCl (einzige Kl: Asthma)
 - Betablocker
 - Isoptin 2 ml (5 mg) verdünnt auf 10 ml NaCl langsam iv (Cave: bei zu schneller Infusion Hypotonie)
- Unregelmässige Breitkomplextachykardie: im Zweifel (präexzitiertes Vorhofflimmern?) Durchführung einer EKV. Keine Gabe von Kalziumantagonisten, Betablocker, Digoxin oder Amiodaron.

Mögliche Reaktionen der SVT auf Adenosin:

- Kein Effekt: inadäguate Dosis/Verabreichung, Kammertachvkardie
- Plötzliches Terminieren: AVNRT AVRT (fokale AT)
- · Anhaltende atriale Aktivität mit 3° AV Block: Vorhofflattern, atriale Tachykardie


AV-Knoten-Reentry-Tachykardie

Häufigste paroxysmale SV-Tachykardie. Plötzlicher Beginn/Ende, meist belastungsunabhängig.

Im EKG kein oder retrogrades P im Endteil des QRS-Komplex (dadurch in inferioren Ableitungen negatives P und in V1 r' «pseudo-inkompletter RSR»)

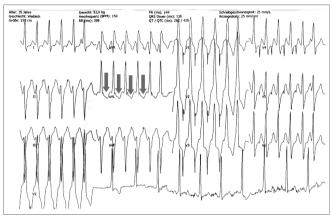
Akute Therapie: vagale Manöver, Adenosin 6-18 mg iv (zentrale Vene, rasch NaCl nachspritzen), Betablocker, Kalziumantagonist

Chronische Therapie: Katheterablation (Erfolgsrate > 95%, Risiko (kompletter AV-Block) < 1%, Betablocker, Ca-Antagonisten, Klasse IC oder III Antiarrhythmika

AVNRT mit retrogradem P in V1 («pseudo RSB»), sehr kurze RP-Zeit < 70 ms

Nach Konversion (der AVNRT) in SR (kein «inkompletter RSB» mehr nachweisbar)

Orthodrome AV-Reentry-Tachykardie (Schmalkomplextachykardie: WPW-Syndrom, wenn Delta-Welle im Sinusrhythmus)

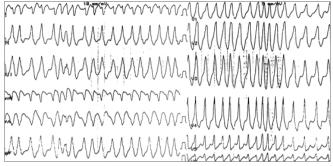

Orthodrome AVRT mit RP > 70 ms

Plötzlicher Beginn, nicht selten bei körperlicher Belastung. EKG: retrogrades P, abgesetzt vom QRS-Komplex, RP > 70 ms (RP länger als bei AVNRT, deshalb P im 12-Kanal-EKG häufiger erkennbar)

Akute Therapie: vagale Manöver, Adenosin 6-18 mg iv (zentrale Vene, rasch NaCl nachspritzen), Betablocker, Verapamil, Diltiazem

Chronische Therapie: Katheterablation (Erfolgsrate > 95%, Risiko kompletter AV-Block bei parahissärer Bahn). Betablocker, Klasse IC oder III Antiarrhythmika

Antidrome AV-Reentry-Tachykardie (Breitkomplextachykardie, da volle Präexzitation = ventrikuläre Erregung über akzessorische Bahn, kein typischer Schenkelblock)


Antidrome AVRT mit RP > 70 ms

Plötzlicher Beginn. EKG: immer Breitkomplextachykardie retrogrades P, abgesetzt vom QRS-Komplex, RP > 70 ms

Akute Therapie: vagale Manöver, Adenosin mit Vorsicht (Defibrillator bereit: Induktion Vorhofflimmern mit schneller antegrader Leitung möglich), Flecainid, Elektrokardioversion, Amiodaron in refraktären Fällen

Chronische Therapie: Katheterablation, Flecainid

Vorhofflimmern, das über die akzessorische Bahn übergeleitet wird (FBI = fast broad irregular)

WPW mit schnell übergeleitetem Vorhofflimmern

Hämodynamisch stabil und instabil: Primär Elektrokardioversion (ggf. Defibrillation nötig bei sehr schneller Überleitung) oder alternativ Flecainid. Keine Gabe von Adenosin, Kalziumantagonisten, Betablocker, Digoxin oder Amiodaron.

Atriale Tachykardie

Vorhoftachykardie mit wechselnder Überleitung

Gleiche atriale Tachykardie nun mit 1:1-Überleitung, z.B. bei körperlicher Belastung

Häufig kein klarer Beginn, meist lang dauernde Tachykardien, die medikamentös schwer therapierbar sind

EKG: RP variabel (P meist gut sichtbar, andere Morphologie als im Sinus-rhythmus)

Akute Therapie: Vagale Manöver, Adenosin, Betablocker, Verapamil, Diltiazem, Klasse IC oder III Antiarrhythmika, EKV

Chronische Therapie: Katheterablation, Betablocker, Verapamil, Klasse IC oder III Antiarrhythmika

Dr. Florian Franzeck, Prof. Dr. Peter Ammann, Dr. David Altmann, Dr. Dr. Roman Brenner

Schrittmachertherapie

Indikationen zur Schrittmachertherapie

AV-Blockierungen (erworben)

Klasse I

- · Asymptomatischer AV-Block III oder AV-Block II Typ 2 (Mobitz)
- · Chronisch symptomatischer AV-Block II (Typ 1 + 2) oder III
- AV-Block II oder III bei neuromuskulären Erkrankungen wie Kearns-Sayre-Syndrom, muskulären Dystrophien usw.
- Bifaszikulärer Block mit intermittierendem AV-Block III oder AV-Block II Typ 2 (Mobitz) (2:1-Block oder h\u00f6hergradig)
- · Wechselnde Schenkelblockbilder

Klasse IIa

- AV-Block II Typ 1 (Wenckebach) mit Symptomen oder infrahisärer Blockierung
- Synkope bei bifaszikulärem Block ohne Nachweis eines AV-Blocks und Ausschluss anderer Ursachen wie Kammertachykardie
- · AV-Blockierung jeden Grades bei neuromuskulären Erkrankungen
- \cdot AV-Block I (PQ > 300 ms) mit Symptomen eines Schrittmachersyndroms

Sinusknoten-Erkrankung

Klasse I

- Symptomatische Bradykardie mit oder ohne Tachykardie, spontan oder unter notwendiger Therapie (dokumentiert z.B. mit 24h-EKG)
- Synkope ohne andere Erklärung und verlängerte Sinusknoten-Erholungszeit in einer elektrophysiologischen Untersuchung

Karotissinus-Syndrom

Klasse I

Rezidivierende Synkopen durch unbeabsichtigte Stimulation des Karotissinus (z.B. Kopfbewegungen, Rasieren), reproduzierbar durch Karotis-Massage mit konsekutiver Asystolie von > 3 Sek. ohne Medikation mit möglicher Beeinflussung des Sinusknotens

Klasse IIa

Rezidivierende, nicht erklärbare Synkopen ohne unbeabsichtigte Stimulation des Karotissinus, aber reproduzierbar durch Karotis-Massage, verbunden mit Asystolie von > 3 Sek.

Vasovagale Synkope

Klasse I

Keine

Klasse IIa

- Patienten > 40 Jahre mit häufigen (> 5/Jahr), schweren vasovagalen Synkopen mit Verletzungsfolgen bei nachgewiesener längerer Asystolie und Unwirksamkeit anderer Therapiemassnahmen
- · Patienten mit Synkope und asymptomatischer Pause > 6 Sek.

Klassifizierung der Indikationen

Klasse I

Evidenz und allgemeiner Konsens, dass eine Massnahme nützlich und effizient ist

Klasse IIa

Überwiegende Evidenz für Nutzen und Effizienz

Klasse IIb

Fragliche Evidenz für Nutzen und Effizienz

Differenzierte Schrittmachertherapie

AV-Block zweiten und dritten Grades

- · Sinusknoten normal: VDD, DDD
- · Sinusknotendysfunktion: DDDR
- Bei seltener Blockierung: DDD-AV, VDD-AV (VVI mit tiefer Hysterese)

Sinusknoten-Erkrankung

- Normale AV-Leitung: AAI(R)
- · Bei AV- oder intraventrikulärer Leitungsstörung: DDD(R)-AV
- · Bei seltenen Pausen: (VVI mit tiefer Hysterese)

Bradykardes Vorhofflimmern: VVIR Karotissinus-Syndrom: DDI (VVI)

Berücksichtigen: biologisches Alter, Lebensumstände

Andere Indikationen

Neurogene kardiale Synkope (kontrovers) (DDI)

Herzschrittmachercode (ICHD)

ICHD: Inter-Society Commission for Heart Disease Resources

1. Stelle Ort der Stimulation	2. Stelle Ort der Wahrnehmung	3. Stelle Betriebsart	4. Stelle Pro- grammierbarkeit	5. Stelle Antita- chykardiefunk- tion
V = Ventrikel	V	I = inhibiert	M = > 3 Funktio- nen program- mierbar	
A = Atrium	Α	T = getriggert	R = Frequenz- adaptation	
D = dual (V+A)	D	D = inhibiert oder getriggert	O = nicht pro- grammierbar	
S = single	S			

VVIR = Ventrikelschrittmacher, frequenzadaptiert; DDM = Zweikammerschrittmacher ohne Frequenzadaptation; DDD-AV = Programmierung zur Erhaltung der AV-Überleitung (z.B. AV-Hysterese, DDD-AAI-Moduswechsel), um rechtsventrikuläre Stimulation zu minimieren

Management von Schrittmacher-/CRT-P vor Operation/Intervention mit elektromagnetischer Interferenz

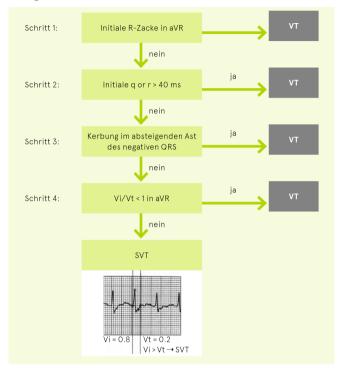
Dr. Florian Franzeck

Prof. Dr. Peter Ammann

Dr. David Altmann

Dr. Dr. Roman Brenner

Kammertachykardien


Einteilung der Kammertachykardien (KT)

- Idiopathisch: keine strukturelle Herzkrankheit. Ausflusstrakttachvkardie, faszikuläre Kammertachykardie
- I.R. struktureller Herzkrankheiten: KHK, dilatative Kadiomyopathie (häufig Bundle-Branch-Reentry-Tachykardie), ARVC, HOCM
- Ionenkanalstörung: Long-QT-, Brugada-Syndrom (i.R. Torsadesde-pointes-Tachykardien)
- Klinisch: stabil, instabil
- Zeitlich: anhaltend (> 30 Sek) nicht anhaltend (Definition mindestens 3 VES > 100 bpm und < 30 Sek.)
- Morphologisch: monomorph, polymorph
- Pathophysiologisch: Reentry (KHK), getriggerte Automatizität (Intoxikationen, kongenitale Vitien)

Merke

- Bei bekannter KHK oder Kardiomyopathie ist eine Breitkomplextachykardie mit > 80% Vortestwahrscheinlichkeit eine Kammertachykardie
- · Unregelmässige Breitkomplextachvkardien sind immer verdächtig auf Vorhofflimmern mit Schenkelblock oder Schenkelblockaberration
- Ausflusstrakttachykardien (oder ventrikuläre Extrasystolen) betreffen typischerweise «herzgesunde» junge Patienten und zeigen eine typische Morphologie im EKG: LSB mit inferiorer Achse, R/S-Umschlag bei V3 oder später bei rechtsventrikulärem Fokus bzw. bei linksventrikulärem Fokus besteht häufig ein früherer R/S-Umschlag (V1/V2). Das Ruhe-EKG ist normal. Es sollte eine Bildgebung mit Frage nach arrhythmogener rechtsventrikulärer Kardiomyopathie (ARVC) erfolgen (Echokardiografie oder MRI), da ventrikuläre Tachykardien i.R. dieser Erkrankung eine ähnliche Morphologie aufweisen können
- Häufige Extrasystolen aus dem Ausflusstrakt (>20%) können zu einer linksventrikulären Dysfunktion führen

VT Algorithmus nach Vereckei et al EHJ 2007

Vi = initiale ventrikuläre Aktivierungsgeschwindigkeit (in den ersten 40 ms). Vi wird in einem bioder multiphasischen ORS-Komplex gemessen und zwar in dem Komplex, wo die initiale ventrikuläre Aktivierung am schnellsten ist. Vt = terminale ventrikuläre Aktivierungsgeschwindigkeit (in den letzten 40 ms).

Basel VT Algorithmus nach Moccetti et al JACC EP 2022

Ursache

Pathologische QT-Verlängerung (siehe Abb. «Bazett-Formel») durch

- Häufig: medikamentös bedingt (z.B. Sotalol, Makrolide, Methadon, Antihistaminika usw., verstärkt durch Hypokaliämie oder Hypomagnesiämie)
- Selten: genetisch bedingte, familiäre Formen der QT-Verlängerung (Familienanamnese?)

Bazett-Formel

$$QTc = \frac{unkorr. QT}{\sqrt{RR}} = \frac{0.52}{\sqrt{0.83}} = 0.57$$

Normal: 0.35-0.43 Sek. Pathologisch: > 0.46 Sek. (Frauen)

Therapie der Kammertachykardie

- Instabil: Flektrokonversion (FKV) 200 J
- Stabil: Bei Unklarheit ob KT oder SVT: Adenosin, Bei stabiler KT Amiodaron (Cordarone) 150 mg langsam iy (Cave: bei schlechter Pumpfunktion EKV sicherer!).
- Idiopathische Kammertachykardie: vagale Manöver, Adenosin. Betablocker oder Verapamil, wenn hämodynamisch stabil. Sonst EKV und/oder Amiodaron.

Rezidivprophylaxe mit Verapamil oder Betablocker. Radiofrequenzablation hat gute Langzeiterfolgsrate (> 90%)

Therapie der Torsades-de-pointes-Tachykardie

- Instabil: Flektrokonversion 150-200 J
- Stabil:
 - Verursachende Medikamente stoppen
 - Magnesium 2 g langsam iv und gegebenenfalls Kalium substituieren (7iel: Serumkalium > 4 0 mmol/l)
 - · Gegebenenfalls Überstimulation mit provisorischem PM
 - Familiäre Formen: Betablocker und gegebenenfalls ICD-Implantation
- Rezidivprophylaxe akut:
 - Provisorischer PM mit tachvkarder Stimulation (verkürzt QT-Zeit)
- Rezidivprophylaxe chronisch:
 - Vermeidung QT-verlängernde Medikamente
 - Rigorose Fiebersenkung
 - Familiäre Formen: Betablocker und ggf. ICD-Implantation

Dr. Florian Franzeck Prof. Dr. Peter Ammann

Dr. David Altmann

Dr. Dr. Roman Brenner

ICD und CRT

ICD (implantable cardioverter defibrillator)

Allgemeine Bemerkungen

- Generell pectoral links implantiert (selten rechts, hier ungünstiger Schockpfad)
- Subkutane ICD Systeme ohne transvenöse Elektrode liegen zwischen M. serratus anterior und M. latissimus dorsi unter der rechten Achsel
- Die Tachy-Funktion des ICD kann mit einem Magneten, der auf das ICD-Aggregat gelegt wird, unterdrückt werden (z.B. beim elektrischen Sturm)
- Die Defibrillationsenergie liegt zwischen 30 und 40 Joules und kann wegen des Hautwiderstandes des Patienten andere Personen nicht elektrisieren

Indikation

Primärprophylaxe

- St. n. Myokardinfarkt (> 40 Tage nach Infarkt) oder KHK und EF ≤ 35% unter optimaler medikamentöser Therapie (OMT) oder ≤ 40% mit anhaltender Kammertachykardie (KT) in elektrophysiologischer Untersuchung
 - In seltenen Fällen kann der ICD nach Infarkt auch früher implantiert werden (z.B. LVEF durch Narbe schon vor Infarkt ≤ 35%, anhaltende KTs > 48 h nach Infarkt, Revaskularisation nicht möglich)
 - Bei Risikopatienten (Diskussion mit behandelndem Kardiologen) kann als Schutz bis zur ICD Implantation eine Life Vest (extern tragbarer Defibrillator) verordnet werden
- Dilatative Kardiomyopathie ohne reversible Ursache unter OMT mit EF < 35%
 - Bei Risikopatienten (Besprechung mit behandelndem Kardiologen) kann eine Life Vest verordnet werden
- Andere Kardiomyopathien (z.B. hypertrophe Kardiopathie, arrhythmogene rechtsventrikuläre Kardiopathie, Sarkoidose) unter bestimmten Voraussetzungen
- · Bestimmte Ionenkanalerkrankungen

Sekundärprophylaxe

- Überlebter Herzstillstand nach Kammertachykardie (KT) oder Kammerfilmmern (KF) ohne reversible Ursache
- Anhaltende KT (> 30 Sek.) ohne reversible Ursache bei struktureller Herzkrankheit (Narben)
- Synkopen und anhaltende KT in der elektrophysiologischen Untersuchung

Problemfall «Elektrischer Sturm»

Definition

Mehrere Schockabgaben wegen anhaltender oder rezidivierender Kammertachykardie/-flimmer-Episoden (≥ 3 ICD Therapien innerhalb 24 Std.)

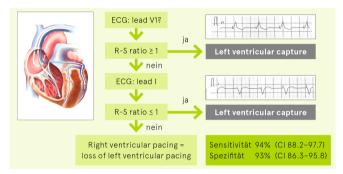
Therapie

Am wichtigsten ist die sofortige, sehr starke Sedation. Elektrolyte auf hochnormale Werte (Serumkalium > 4 mmol/l, evtl. Magnesium iv). Antiarrhythmikum Amiodaron (Cordarone) 150 mg langsam iv, Betablocker. Evtl. anheben der Grundfrequenz mittels PM (Überstimulation des Triggers, z.B. VES), intra-aortale Ballonpumpe, Intubation. Behebung der Ursache: myokardiale Ischämie → Revaskularisation; Getriggerte/fokale Arrhythmie (z.B. ventrikuläre Extrasystole, Narben-Reentry) → elektrophysiologische Untersuchung/Ablationstherapie.

CRT (cardiac resynchronization therapy)

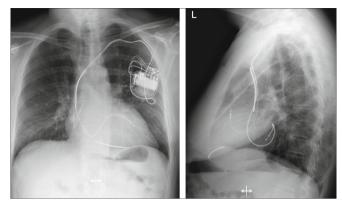
Behandlung der Herzinsuffizienz mittels Herzschrittmachertherapie. Prinzip: Der aufgrund eines Linksschenkelblocks dyssynchrone linke Ventrikel wird durch linkslaterale epikardiale Stimulation (über Sinus coronarius) «resynchronisiert».

Indikationen

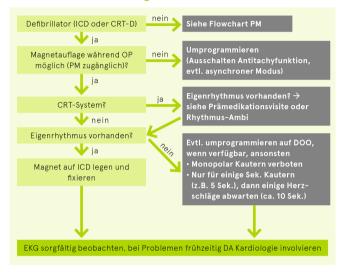

Klasse I

 LVEF ≤ 35% und NYHA ≥ II unter ausgebauter medikamentöser HI-Therapie, Linksschenkelblock > 150ms (Klasse IA) oder 120–150 ms (Klasse IB)

Klasse II


- Gleich wie Klasse I aber Nicht-Linksschenkelblock > 150 ms (Klasse Ila B) oder Nicht-Linksschenkelblock 120-150 ms (Klasse Ilb B)
- Permanentes Vorhofflimmern, LVEF ≤ 35% unter ausgebauter

- medikamentöser HI-Therapie, QRS ≥ 120 ms (Klasse IIa B).
- Permanentes Vorhofflimmern mit nicht erreichbarer medikamentöser Frequenzkontrolle und eingeschränkter LVEF vor AV-Knotenablation (Klasse IIa B)
- Hochprozentiges rechtsventrikuläres Pacing bei Schrittmacherpatienten mit relevant eingeschränkter LVEF und Herzinsuffizienz
- Patienten mit Bradykardie und hohem erwartetem ventrikulären Pacinganteil sowie reduzierter LVEF


Der Algorithmus gilt nur bei vorbestehendem LSB und fixem biventrikulärem pacing (nicht bei Algorithmen, welche intrinsische Überleitungen (Fusion pacing) zulassen).

Nach: Ammann P, Sticherling C et al. An electrocardiogram-based algorithm to detect loss of left ventricular capture during cardiac resynchronization therapy. Ann Intern Med. 2005 Jun 21:142(12 Pt 1):968-73.

Biventrikulärer Schrittmacher mit ICD-Elektroden im rechten Atrium, im rechten Ventrikel und in der posterolateralen Vene des Sinus coronarius (für LV-Stimulation)

Management von ICD-/CRT-D vor Operation/Intervention mit elektromagnetischer Interferenz

Dr. Florian Franzeck, Prof. Dr. Peter Ammann, Dr. David Altmann, Dr. Dr. Roman Brenner

Endokarditis

Endokarditis-Prophylaxe

siehe auch Guidelines.ch: Endokarditisprophylaxe

Patientenedukation ist wichtig - Flyer und Endokarditisausweis unter: www.endocarditis.ch

Wann muss man an eine Endokarditis denken?

Grundsätzlich bei Fieber/Sepsis ohne Fokus, speziell bei positiven Blutkulturen und folgenden Zusatzkriterien:

- · Embolische Ereignisse
- B-Symptomatik über Wochen
- Biologische und mechanische Klappenprothesen sowie Transkatheterimplantate, schwer verkalkte native Klappen
- · Endovaskuläre Fremdkörper
- · Neues Herzgeräusch (ältere Berichte durchsehen: wirklich «neu»?)

Mindestens 3 Blutkulturen (je 1 Paar; unbedingt ausreichende Füllmenge (10ml) beachten!) sollten bei akuter Klinik im Abstand von 30 Minuten erfolgen (bei schleichender Klinik und stabilem AZ allenfalls sogar im Abstand von 12 Stunden); zudem bei bestehendem Fieber, falls Antibiotikatherapie noch nicht begonnen.

Modifizierte Duke-Kriterien für die Diagnose einer infektiösen Endokarditis (IE)

Major-Kriterien

Blutkulturen

- Typische Erreger für eine IE in 2 getrennten Blutkulturen: S. viridans, S. gallolyticus (früher bovis), Bakterien der HACEK-Gruppe, S. aureus. Enterokokken (ohne Fokus) oder
- Mit einer IE vereinbare Erreger: mindestens zwei positive Blutkulturen im Abstand von 12 Stunden (oder 3 bzw. die Mehrheit von ≥ 4 Blutkulturen positiv) oder
- Eine positive Blutkultur f
 ür Coxiella burnetii oder Phase-I-IgG-Antik
 örper-Titer von > 1:800

Bildgebung

- IE-positive Echokardiografie (Vegetation, Abszess/Pseudoaneurysma, Perforation, neue Dehiszenz einer Klappenprothese)
- Pathologische Aktivität um eine Klappenprothese im 18F-FDG PET/ CT (wenn Implantation vor > 3 Monaten)
- Paravalvuläre Läsion im Herz-CT

Minor-Kriterien

- Prädisposition: kardial (z.B. Klappenprothese), intravenöser Drogenkonsum
- Fieber > 38.0 °C
- Vaskuläre Phänomene: arterielle Embolien, septische Lungeninfarkte, mykotische Aneurysmata, intrakranielle Blutungen, konjunktivale Blutungen, Janeway-Läsionen
- Immunologische Phänomene: Glomerulonephritis, Osler-Knötchen, Roth-Flecken, positiver Rheumafaktor
- Mikrobiologie: positive Blutkultur, die kein Major-Kriterium erfüllt, oder serologischer Hinweis auf aktive Infektion mit möglichem Erreger für eine IE

Definitive Diagnose einer IE

- · 2 Major-Kriterien oder
- · 1 Major- und 3 Minor-Kriterien oder
- 5 Minor-Kriterien

Mögliche Diagnose einer IE

- · 1 Major- und 1 Minor-Kriterium oder
- · 3 Minor-Kriterien

Echokardiografie

Indikation für transthorakale Echokardiografie (TTE)

- Klinischer V.a. IE (v.a. bei Klappenprothese/intrakardialem Fremdmaterial, und positiven Blutkulturen oder neuem Herzgeräusch)
- Bakteriämie mit S. aureus (wegen hoher Virulenz Häufung von IE) oder persistierende Bakteriämie mit Endokarditis-typischen Erregern (siehe Major-Kriterien oben)

Keine Indikation

- · Transientes Fieber ohne Bakteriämie oder neues Herzgeräusch
- Transiente Bakteriämie mit einem für eine IE atypischen Keim (typische Keime s.o.: Duke-Kriterien) und/oder bei nachgewiesener nicht-endovaskulärer Infektionsquelle

Indikation für transösophageale Echokardiografie (TEE)

- Persistierend hoher V.a. IE trotz negativem TTE (v.a. bei Klappenprothese/intrakardialem Fremdmaterial, Bakteriämie mit S. aureus oder Fungämie)
- In der Regel bei positivem TTE-Befund zum Ausschluss lokaler Komplikationen

Indikation für Wiederholung des TTE/TEE im Verlauf einer IE

- Neue Komplikationen (z.B. neues Geräusch, Embolie, persistierendes Fieber, Herzinsuffizienz, Abszess, AV-Block)
- · Bei Abschluss der antibiotischen Therapie
- Im Verlauf zur Detektion stummer Komplikationen in Abhängigkeit von Vorbefunden. Keim und klinischem Ansprechen

Indikationen für einen chirurgischen Eingriff bei linksseitiger IE

Generell grosszügige und frühzeitige Diskussion im «Endokarditis-Team» (unter Einbezug von Infektiologie, Herzchirurgie und Kardiologie, bei Bedarf auch anderen Subdisziplinen)

1. Herzinsuffizienz

- Schweres akutes Klappenvitium mit refraktärem Lungenödem oder kardiogenem Schock
- Schweres Klappenvitium mit Herzinsuffizienz oder ausgeprägter hämodynamischer Relevanz

2. Unkontrollierte Infektion

- Lokal unkontrollierte Infektion (Abszess, Pseudoaneurysma, Fistel, grössenprogrediente Vegetation)
- · Infektion durch Pilze oder multiresistente Keime
- Positive Blutkulturen trotz adäquater antibiotischer Therapie
- Prothesen-assoziierte IE durch Staphylokokken oder nicht-HACEK gramnegative Bakterien

3. Vermeiden von Embolisation

Trotz adäquater antibiotischer Therapie persistierende Vegetation
 10 mm mit mindestens einer Embolie

- Vegetation > 10 mm in Kombination mit schwerem Klappenvitium, niedriges OP-Risiko
- · Vegetation > 30 mm

Empirische und spezifische antibiotische Behandlung

Siehe **Guidelines.ch**: Endokarditis: Empirische und spezifische Therapie

Schrittmacher-assoziierte Infektionen/CIED (cardiac implantable electronic device) Infektionen

Siehe **Guidelines.ch**: Schrittmacher-assoziierte Infektionen / CIED ('cardiac implantable electronic device') Infektionen

Quellen/Links

- Sendi P et al. Infective Endocarditis: Prevention and antibiotic prophylaxis. Cardiovasc. Med. 2021 (endorsed byy SSI, SSC, SSPC, PIGS). https://doi.org/10.4414/cvm.2021.02144
- Habib G, Lancellotti P, Antunes ML et al. 2015 ESC Guidelines for the management of infective endocarditis. Eur Heart J. 2015 21;36(44):3075–128, https://doi.org/10.1093/eurhearti/ehv319
- Douglas PS, Garcia MJ, Haines DE et al. Appropriate Use Criteria of Echocardiography. J. Am Soc Echocardiogr. 2011;24(3):229–67 https://doi.org/10.1016/j.echo.2010.12.008
- Doherty JU, Kort S, Mehran R et al. Appropriate Use Criteria for Multimodality Imaging in Valvular Heart Disease. J Am Coll Cardiol. 2017 26;70(13):1647-72, https://doi.org/10.1016/j.jacc.2017.07.732

Dr. Niklas Ehl

Dr. Manuel Frischknecht

Dr. Mathias Van Hemelrijck

Valvuläre Herzerkrankungen

Aortenklappenstenose (AS)

Meist degenerative Verengungen der Aortenklappe mit Obstruktion des Blutflusses vom linken Ventrikel in die Aorta.

- **Prävalenz:** Steigt mit Alter (2-7% bei Bevölkerung > 65 Jahre: 12% > 75 Jahre)
- · **Ätiologie:** V.a. Degeneration (80%), insbesondere bei bikuspiden Klappen (1-2% der Bevölkerung), selten rheumatisch

Prognose

- Asymptomatisch (bei älteren Patienten schwierig zu erfassen, siehe Diagnostik): Jährliche Inzidenz des plötzlichen Herztodes < 1% und ereignisfreies Überleben innert 2 Jahren nur 20-50%!
- · Sobald symptomatisch jährliche Inzidenz des plötzlichen Herztodes 8-34% und 5-Jahres-Überleben 15-50%.
- Die Mortalität unter medikamentöser Therapie bei inoperabler. symptomatischer, schwerer Aortenstenose lag im PARTNER Trial bei 50% innerhalb eines Jahres

Diagnostik

- Anamnese: Belastungsdyspnoe (NYHA I-IV), Angina Pectoris (CCS I-IV), Schwindel und Synkopen unter Belastung, im Alter oft unspezifische Symptome wie Ermüdbarkeit und Zeichen der Herzinsuffizienz, schwierig erfassbar bei (multimorbiden) Patienten mit geringer körperlicher Aktivität/Vermeidungsverhalten (s.u.).
- Klinische Befunde: Raues mid- bis spätsystolisches Crescendodecrescendo-Geräusch mit p.m. im 2. ICR rechts mit Fortleitung in die Carotiden (Lautstärke des Geräusches korreliert nicht mit dem Stenosegrad), 2. Herzton bei schwerer AS oft fehlend (oft in Kombination mit einem pulsus parvus et tardus)

Apparative Untersuchungen

- **EKG:** > 80% unspezifisch, linksventrikuläre Hypertrophie
- Transthorakale Echokardiografie (TTE): I.d.R. ausreichend zur Erfassung des Schweregrades der AS (Beurteilung der linksventri-

kulären Funktion [biplane EF, globaler longitudinaler strain, 3D EF]. Aorta, andere Vitien, Hinweise auf pulmonale Drucksteigerung). Eine genaue Quantifizierung des Stenosegrades ist für den Vergleich im Langzeitverlauf notwendig.

Echokardiographische Kriterien schwere Aortenklappenstenose

Klappenöff- nungsfläche (KÖF)	Indexierte KÖF	Mittlerer Druck- gradient	Maximale Spit- zengeschwin- digkeit	Verhältnis Geschwindig- keitsintegral (AK/LVOT)
< 1.0 cm ²	$< 0.6 \text{ cm}^2/\text{m}^2$	> 40 mmHg	> 4 m/s	< 0.25

Bei diskrepanten Befunden oder nicht optimaler Untersuchungsqualität und bei Verdacht auf eine schwere AS weitere Diagnostik:

- Belastungstest mittels Ergometrie/Laufband: Bei asymptomatischen Patienten zur Objektivierung der Belastbarkeit bzw Demaskierung der Symptome (IC), bei fehlender Blutdruckanstieg bzw. pathologischem Abfall (IIa C) Empfehlung für Klappeneingriff.
- Dobutamin Stress-Echokardiografie: Bei eingeschränkter linksventrikulärer Funktion mit niedrigen Gradienten zum Unterscheiden zwischen «low-flow, low-gradient» - und «paradoxical lowflow, low-gradient»-Aortenstenose (chirurgische Mortalität bei ersterer 5%, bei letzterer ca. 32%)
- Transösophageale Echokardiografie (TEE): Bei inkonklusiven TTE-Befunden zur Beurteilung der Klappenmorphologie und Planimetrie der Klappenöffnungsfläche im 3D Bild, multiplanare Quantifizierung des Aortenklappenannulus im 3D Datensatz vor perkutaner Aortenklappenimplantation (TAVI) bei Patienten mit schwerster Niereninsuffizienz alternativ zur CT-Diagnostik.
- Koronarangiografie: Präoperativ/interventionell Frage nach relevanter KHK, ggf. simultane Druckmessung im linken Ventrikel und Aorta zur Quantifizierung der AS
- Multislice Angio CT: Exakte Quantifizierung des Aortenklappenannulus multiplanar, Morphologie und Verkalkung der Aortenklappe, Anatomie der Koronarostien und Darstellung der Aorta und potentieller arterieller Zugangswege (femoral, subclavia, carotis, aortal,

caval). Entscheidende Untersuchung für die korrekte Strategiewahl im Herzteam (v.a. TAVI und minimal invasiver Klappenersatz).

Verlaufskontrollen

- Leichte AS: Bei jüngeren Patienten mit leichter Stenose ohne wesentliche Verkalkung 3- bis 5-iährlich Echokardiografie und Ergometrie
- Mittelschwere AS: Alle 1-2 Jahre, bei symptomatischen Patienten und Erstdiagnose in 6 Monaten. «Mittelschwer» kann immer auch eine unterschätzte «schwere» Aortenklappenstenose sein.
- Schwere AS, asymptomatisch: alle 6 Monate jährlich mit Frage nach Neu-Auftreten von Symptomen, ggf. Ergometrie und Echokardiografie mit Frage nach Befundänderung (insbesondere der linksventrikulären Funktion)
- Das NT-pro BNP kann zur Verlaufskontrolle nützlich sein
- Kontrollintervalle individuell verkürzen z B. bei Risikofaktoren. (Verkalkung, rascher Gradientenanstieg) oder Malcompliance

Medikamentöse Therapie

- Die schwere AS ist kausal medikamentös nicht therapierbar!
- Nur Palliation oder kurzfristige Behandlung der Herzinsuffizienz (vor AKE/TAVI): z.B. Diuretika. CAVE: Hypotonien durch ACE-Hemmer, Angiotensin-Rezeptorblocker oder Spironolacton vermeiden und **keine negativ inotropen** Substanzen verwenden.

Präoperative Risikostratifizierung

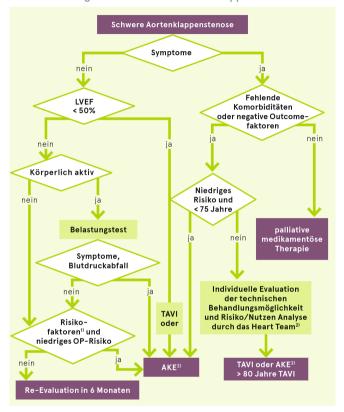
Zwei Score-Systeme: der US-amerikanische STS Score (http://riskcalc.sts.org) und der Europäische EuroSCORE II (www.euroscore.org/ calc) werden zur Einschätzung der perioperativen Morbidität und Mortalität herangezogen. Die Scores sind abgeleitet aus Datenbanken des chirurgischen Klappenersatzes (AKE) und ungeeignet, um das individuelle Risiko eines perkutanen Klappeneingriffes (TAVI) zu beurteilen. Ein hohes operatives Risiko besteht bei einem STS oder EuroSCORE II ≥ 8% und ein niedriges operatives Risiko bei STS/EuroSCORE II ≤4%.

Für einen individuellen Therapieentscheid müssen bei der Diskussion im Herzteam (Herzteam: Invasiver Kardiologe, Herzchirurg, kardiovaskulärer Imaging-Spezialist, fakultativ: Intensivmediziner, Anästhesist, Hausarzt, Internist und Geriater) verschiedene klinische, anatomische und prozedurale Faktoren berücksichtigt werden. Zu diesen gehöhren: «Gebrechlichkeit» («Frailty»), Malnutrition, cognitive Dysfunktion, schwere Lungenerkrankung, Nierenfunktion (insb. GFR ≤30 ml/min), Lebererkrankung, herabgesetzte Lebenserwartung, Porzellanaorta, intakte Bypässe nach ACVB-OP, thorakale Bestrahlung, Hinweise auf Endokarditis, femorale und andere Zugangswege, erwarteter Patient-/Prothesen-Mismatch, schwere thorakale Deformitäten, Anatomie des Sinus und der Koronarabgänge, Annulusgrösse, Thromben im Ventrikel/Aortal, relevante KHK, Aneurysmata, weitere Klappenerkrankungen etc. Der Vorschlag des Herzteams wird mit dem Patienten diskutiert, der dann selbst eine fundierte Entscheidung für eine Behandlung treffen kann.

Chirurgischer Aortenklappenersatz (AKE)

- Früher alternativloser «Gold-Standard» heute besteht die Möglichkeit einer biologischen TAVI (siehe nächster Abschnitt).
- Weiterhin Standard bei gleichzeitig notwendiger Bypass-Operation (KHK) oder begleitender Aorten- oder Klappenchirurgie
- Resektion und Ersatz der nativen Klappe unter Verwendung der Herz-Lungen-Maschine mittels Sternotomie oder alternativ minimal invasiver Zugangsweg von rechts parasternal oder mittels Hemi-Sternotomie
- Für jüngere Patienten < 75 Jahre (< 65 Jahre gemäss AHA) mit niedrigem operativen Risiko (STS und Euroscore II < 4%) (IB)
- Die Wahl der Prothese (meachanisch vs. biologisch) basiert auf der Abwägung zwischen dem Risiko der Einnahme lebenslanger oraler Antikoagulation (OAK) versus Degeneration der implantierten (biologischen) Klappen. Die Entscheidung basiert auf dem Wunsch des aufgeklärten Patienten nach Diskussion im Herzteam.
- Mechanische Prothese bei fehlenden Kontraindikationen für OAK, jüngeren Patienten < 40 Jahre, Hyperparathyreoidismus, Hämodialyse (IC), mechanische Prothese in anderer Position (IIa C), Patient < 60 Jahre (IIaB), längere Lebenserwartung und Kontraindikation für Re-OP/TAVI (IIa C)

Biologische Prothese bei nicht sichergestellter Antikoagulation. hohem Blutungsrisiko, herabgesetzter Lebenserwartung (IC), Re-OP aufgrund einer Klappenthrombose bei mechanischer Klappe trotz adäquater Antikoagulation (IC). Frauen mit Schwangerschaftswunsch (IIa C) ältere Patienten > 65 Jahre (IIa C)


Perkutane Aortenklappenimplantation (TAVI, Katheter-basiert)

- Biologischer interventioneller Aortenklappenersatz wurde initial für inoperable Patienten entwickelt. Es zeichnet sich aber ein Paradigmenwechsel hin zu einem neuen «Gold-Standard» für den biologischen Klappenersatz ab. Dies geschieht aufgrund der besseren hämodynamischen Daten, fehlenden Hinweisen für eine unterlegener Haltbarkeit und dem niedrigeren, perioperativen Risiko der TAVI – trotz nach wie vor höherer Schrittmacherrate
- In Lokalanästhesie ohne Herz-Lungen-Maschine mit arteriellen Zugangsmöglichkeiten **femoral** und via A. subclavia, carotis oder transcaval: in Narkose auch nicht-femoral (transapical oder direkt aortal) - kann v.a. bei inoperablen Patienten erwogen werden (IIbC)
- Ältere Patienten > 75 Jahre (> 65 Jahre gemäss AHA) oder Patienten mit hohem operativen Risiko (STS oder Euroscore II > 8% oder die aus anderem Grunde ungeeignet für den operativen Klappenersatz sind (IA)
- Die Diskussion im **Herzteam ist obligatorisch** und ermöglicht den Therapieentscheid unter Berücksichtigung individueller Faktoren und trägt der rasanten technologischen Entwicklung Rechnung.

Ballonvalvuloplastie

In Einzelfällen diskutieren: Hochrisikopatienten mit akuter hämodynamischer Instabilität als Überbrückung («bridge to therapy») vor AKE oder TAVI und Patienten, die mit schwerer Aortenklappenstenose eine unaufschiebbare nicht-kardiale Hochrisikooperation benötigen (IIb C).

Praktisches Vorgehen bei schwerer Aortenklappenstenose

Nach: Leitlinien Herzklappenerkrankungen ESC 2021, AHA/ACC 2020

AS= Aortenstenose, AKE= Aortenklappenersatz, LVEF= linksventrikuläre Auswurfsfraktion, TAVI= Transkatheter Klappenimplantation ¹⁾ OP sollte bei folgenden Risikofaktoren (IIa C) bedacht werden: Spitzengeschwindigkeit > 5.5 m/s, Schwere Verkalkung und Progression der Spitzengeschwindigkeit > 0.3 m/s/Jahr. Kann diskutiert werden (IIa C) bei 3× erhöhtem BNP ohne andere Erklärung. ²⁾ Die Entscheidung soll im «Herzteam» aufgrund individueller klinischer Charakteristika und Anatomie getroffen werden

Aortenklappeninsuffizienz (AI)

Ist entweder Folge einer Läsion der Klappentasche oder eine Erkrankung der Aortenwurzel bzw. des Aortenklappenannulus:

- Akut: Endokarditis. Typ A Dissektion der Aorta oder traumatisch
- **Chronisch:** Bikuspide Aortenklappe, Dilatation des Aortenklappenannulus oder des Aortensinus (z.B. Marfan-Syndrom)

Prognose

- Leichte bis mittelschwere asymptomatische Al: Gute Prognose, d.h. iährliche Mortalität ca. 1%
- Schwere asymptomatische Al: Niedrige Mortalität, aber bei schwerer LV Dilatation (LVESD > 50 mm) beträgt die Wahrscheinlichkeit für Herzinsuffizienz und Tod 19% pro Jahr
- Schwere symptomatische Al: Jährliche Mortalität ca. 10–20%
- Akute Al: Hohe Mortalität

Diagnostik

- Anamnese: Belastungsdyspnoe und/oder Angina pectoris, Palpitationen und Synkopen.
- Klinische Befunde: Hohe Blutdruckamplitude, arterielle Pulsationen, diastolisches Geräusch mit Decrescendo-Charakteristik (vorgebeugt im Sitzen auskultieren), meist auch systolisches Austreibungsgeräusch (Pendelvolumen). Bei akuter Al ist das Geräusch kurz und v.a. bei Lungenödem schwierig zu diskriminieren!

Apparative Untersuchungen

- Transthorakale Echokardiografie (TTE): Semiguantitative Erfassung des Schweregrades der Al, Ätiologie, Entscheidungsrelevante zusätzliche Befunde: LV-Auswurfsfraktion (biplane EF, 2D strain) und Grösse (LVESD, Volumen 3D), aortale Dimensionen (Annulus, Sinus, Sinotubulärer Übergang, Ascendens) und begleitende Vitien.
- Transösophageale Echokardiografie (TEE): Exakte morphologische Beurteilung der Klappentaschen (ein flail bedeutet immer eine schwere Al) und der Aorta. Alternative zum CT und MRI bei Niereninsuffizienz, ideal beim intubierten, dekompensierten Patienten in Notfallsituation.

- Koronarangiografie/Rechtsherzkatheter: Präoperativ bei Patienten > 40 Jahre mit mittlerem-hohen kardiovaskulärem Risiko zur Beurteilung der KHK, semiquantitative Graduierung der Al und Hämodynamik bei inkonklusiven echokardiographischen Befunden, Beurteilung prä-/postkapilläre pulmonale Hypertonie
- CT und MRI: Beurteilung des gesamten aortalen Gefässbaumes, Verkalkungen, seltenen Ursachen (Marfan, Vaskulitiden unterschiedlicher Genese, Lues); CT statt Koronarangiografie bei jungen Patienten mit niedrigem kardiovaskulären Risiko; Angio CT «TAVI-Protokoll» zur erweiterten OP Planung

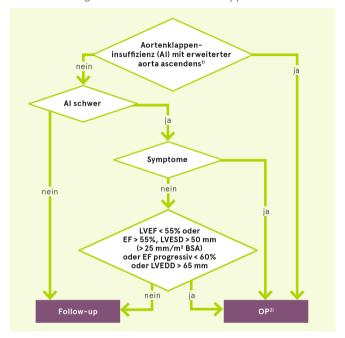
Verlaufskontrollen

- Leichtgradige Al: 2- bis 5-jährliche echokardiografische Kontrolle und jährliche klinische Beurteilung durch den Hausarzt
- Mittelschwere AI: 2 Jahre klinisch als auch echokardiografisch Kontrolle (bei neu symptomatischen Patienten nach 6 Monaten)
- Schwere, chronische AI bei stabilen Messwerten: alle 12 Monate Echokardiografie, aber bei Progredienz des Schweregrades oder Dilatationen der Aorta/des linken Ventrikels im Bereich der Grenzwerte: 6-monatige Kontrollen mittels Echokardiografie

Medikamentöse Therapie und Verhaltensmassnahmen

- Behandlung einer evtl. arteriellen Hypertonie primär mit Vasodilatatoren (ACE-Hemmer, Angiotensin-Rezeptor-Blocker) – nach Möglichkeit kein Betablocker
- Bei Patienten mit Marfan-Syndrom (bzw. generell aortaler Dilatation) sind Betablocker und/oder Angiotensin-Rezeptor-Blocker (gute Daten v.a. für Losartan) prä- und postoperativ angezeigt.
- Vasodilatatoren zur kurzfristigen Herzinsuffizienztherapie vor OP
- Bei schwerer Al oder grenzwertigen aortalen Durchmessern keine isometrischen Übungen, Kontaktsportarten, Wettbewerbe oder hohe körperliche Anstrengungen

OP-Indikationen für chirurgischen Aortenklappenersatz (AKE)


 Mittelschwere Al und Herzoperation aus anderem Grund (Bypässe, Klappenoperation) (II a)

- Symptomatische, akute schwere Al: Sofortige/dringliche Operation
- Chronische schwere Al:
 - Auftreten von Symptomen (I B)
 - Asymptomatischen Patienten mit Verschlechterung der linksventrikulären Funktion (FF < 50%: LC: AHA < 55%) oder Grössenzunahme in seriellen, vergleichbaren Messungen (LVESD >50 mm oder LVESDi > 25 mm/m² BSA oder LVEDD > 65 mm). Die Sterblichkeit steigt bereits ab einem LVESDi > 20mm/m² BSA
 - · Ausgesuchte Patienten (TEE obligatorisch) mit Eignung für die Klappenreparatur (nicht verkalkt, Aortenwurzelerweiterung oder Prolaps) frühzeitige Diskussion im Herzteam

Perkutane Aortenklappenimplantation (TAVI) bei Al

Indikationsstellung bei inoperablen Patienten im Herzteam unter Berücksichtigung der individuellen Faktoren (nur in Ausnahmefällen möglich wegen fehlendem Kalk und oft zu grossem Annulus, CT nach «TAVI-Protokoll» obligatorisch).

Praktisches Vorgehen bei schwerer Aortenklappeninsuffizienz

Nach: Leitlinien Herzklappenerkrankungen ESC 2021 und ACC/AHA 2020

^{1) ≥ 45} mm Marfan-Syndrom + Risikofaktor, ≥ 50 mm Marfan-Syndrom oder bikuspide Klappe/ Coarcatio + Risikofaktor; ≥ 55 mm für alle übrigen.

²⁾ Diskussion der OP auch bei signifikanten Änderungen der linksventrikulären oder aortalen Dimensionen während Follow-up.

Mitralklappeninsuffizienz (MI)

Zweithäufigste Klappenerkrankung in der Allgemeinbevölkerung

Prävalenz: Mittelschwere oder schwere MI 17% in der Normalbevölkerung, 9.3% bei über 75-Jährigen

Ätiologie:

- Primäre (organische) MI mit strukturellen/degenerativen Veränderungen der Klappe: Prolaps, «Flail leaflet» bei Sehnenfadenabriss, myxomatöse Veränderungen, rheumatische Erkrankung, Endokarditis, Cleft, Papillarmuskelruptur nach Myokardinfarkt
- Funktionelle MI mit strukturell normaler Klappe: Isolierte Annulusdilatation bei Vorhofsvergrösserung, «Tethering» der Klappensegel bei LV-Dilatation, ischämisch bei Papillarmuskeldysfunktion oder nach Infarkt

Prognose

Bei Leichter MI besteht keine Einschränkung der Lebenserwartung. Die chronische MI wird gut toleriert und bleibt lange asymptomatisch. Bei zunehmender linksventrikulärer Leistungseinschränkung kommt es zu klinischen Symptome: Dyspnoe, Herzklopfen (Vorhofflimmern bei Vorhofdilatation). Orthopnoe, nächtliche Hustenanfälle. Die asymptomatische schwere MI hat eine 5-Jahres-Wahrscheinlichkeit für kardiale Ereignisse (Tod, Herzinsuffizienz, VHF) von 14-33%. Die schwere symptomatische funktionelle MI (mit oder ohne KHK) sowie die akute schwere MI (Papillarmuskelabriss nach Myokardinfarkt: Sehnenfadenabriss) haben ohne medikamentöse und chirurgische Therapie eine sehr schlechte Prognose.

Diagnostik

- Anamnese: Dyspnoe (NYHA I-IV), Orthopnoe, Palpitationen (Vorhofflimmern); Bei chronischer MI oft lange asymptomatischer Verlauf
- Klinische Befunde: Unmittelbar nach dem eher leisen ersten Herzton hochfrequentes, bandförmiges Systolikum mit p.m. über der Herzspitze mit Fortleitung in die Axilla (Auskultation in Linksseitenlage!)

Apparative Untersuchungen

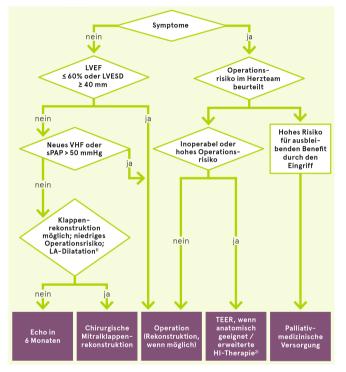
- · **EKG:** p-Mitrale, (paroxysmales) Vorhofflimmern
- Transthorakale Echokardiografie (TTE): Schweregrad der MI, Volumetrie und Funktion des linken Ventrikels (ESD, biplane EF, 2d Strain), Vorhofsgrösse
- Transösophageale Echokardiografie (TEE): Bei diskrepanten Befunden oder V.a. relevante MI (sog. «mittelschwere» MI und symptomatischer Patient), exakte Regurgitationsvolumina mittels 3D-Volumetrie, Area Contracta im Farb-3D Datensatz, präoperativ/interventionell zur exakten Erfassung der Morphologie (3D-Darstellung der Mitralklappe)
- Physikalische Belastung mit zusätzlicher Echokardiografie auf dem Liegevelo: Unklare Fälle oder bei dynamischer (ischämischer) MI
- Koronarangiografie/Rechtsherzkatheter: Präoperativ/interventionell Frage nach KHK, ergänzende Beurteilung des Schweregrades der Mitralinsuffizienz und der Abklärung einer allfälligen begleitenden pulmonalen Hypertonie

Medikamentöse Therapie

Die medikamentöse Therapie der **degenerativen MI** ist indiziert bei der Entwicklung einer systolischen Dysfunktion und gleichzeitig ist die operative Indikation zu prüfen. Im Gegensatz dazu ist bei der **funktionellen MI** die medikamentöse Therapie der Linksherzinsuffizienz der erste Schritt der Behandlung. Das Prinzip ist gleich bei beiden Pathologien und beinhaltet insbesondere eine Nachlastsenkung (siehe Kapitel <u>Herzinsuffizienz</u>). Achtung: Zu starke Bradykardisierung vermeiden.

Chirurgische Therapie

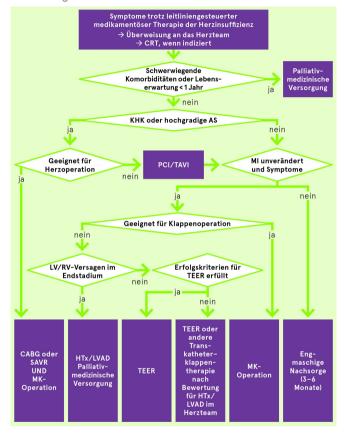
- · Indikationsentscheidung siehe Grafik
- Mitralklappenrekonstruktion (MKR, konventionell oder minimalinvasiv): Bei passender Klappenmorphologie Methode der Wahl beim Patienten mit niedrigem operativem Risiko und degenerativer MI. Bei funktioneller MI ist eine Reparatur nicht besser als Klappenersatz. Die Reparatur beinhaltet Mitralringimplantation, Segelresektion und Einsatz künstlicher Sehnenfäden.
- Mitralklappenersatz (MKE, biologisch oder mechanisch): Bei schwer vorgeschädigter nativer Herzklappe oder rheumatischer


Erkrankung, die eine Reparatur verunmöglicht. Mechanische (jüngere Patienten < 65 Jahre: Ila C) oder biologische (ältere Patienten > 70 Jahre: Ila C) Prothese. Im Alter 65-70 Jahre sind beide Prothesen möglich. Die Wahl der Prothese ist immer eine individuelle Entscheidung basierend auf der Einnahme lebenslanger oraler Antikoagulation (mechanisch) versus Degeneration der implantierten (biologischen) Klappe und basiert auf dem Wunsch des aufgeklärten Patienten (I C).

Perkutane Behandlungsmöglichkeiten

Die katheterbasierte «Edge-to-Edge Therapie («TEER») mittels Mitra-Clip oder Pascal Device kommt bei Hochrisiko-Patienten (Herzteam-Diskussion) mit schwerer, funktioneller oder degenerativer MI zum Einsatz, Ist aber nicht anwendbar bei Endokarditis, rheumatisch veränderten oder stark verkalkten Klappen. Weitere Verfahren sind in der Entwicklung, in klinischer Erprobung und teils auch schon klinisch verfügbar (perkutane Ringannuloplastie, perkutaner Klappenersatz).

Die 3 Jahresdaten der COAPT Studie zeigen klar eine Überlegenheit der perkutanen «Edge to Edge» Reparatur in Kombination mit optimaler leitliniengesteuerter medikamentöser Therapie der Herzinsuffizienz gegenüber der alleinigen medikamentösen Therapie. Voraussetzung sind schwere Mitralinsuffizienzen, die nicht zu spät therapiert werden (EF 20-50%, LVESD < 70 mm, PASP ≤ 70 mmHg).


Behandlung der schweren degenerativen (primären) Mitralklappeninsuffizienz (MI)

Nach: Leitlinien Herzklappenerkrankungen FSC 2021

BSA= Körperoberfläche: LA= linker Vorhof: LVEF= linksventrikuläre Auswurffraktion: LVESD= Linkventrikulärer enddystolischer Durchmesser, sPAP= systolischer pulmonal-arterieller Blutdruck; TEER= Transkatheter Edge-to-Edge-Therapie; VHF= Vorhofflimmern 1) Asymptomatischer Patient, hohe Reparaturwahrscheinlichkeit (>95%, niedriges Risiko <1%), LVEF <60%, LVESD ≥40mm LA-Volumen ≥ 60 ml/m2 BSA oder > 50mm, sPAP > 50mmHg, VHF. 2) Erweiterte Herzinsuffizienztherapie beinhaltet kardiale Resynchronisationstherapie (CRT), Mitraclip, linksventrikuläre Assist Devices (LVAD), Herztransplantation.

Behandlung der schweren funktionellen (sekundären) MI

Nach: Leitlinien Herzklappenerkrankungen ESC 2021

AS= Aortenklappenstenose; CABG= Koronararterien-Bypass, CRT= Kardiale Resynchronisationstherapie, HTx= Herztransplantation; LVAD= LV-Unterstützungssystem; LV/ RV= Linker/Rechter Ventrikel; MK= Mitralklappe; KHK= Koronare Herzkrankheit; PCI= Perkutane Koranar-Intervention; SAVR= Chirurgischer Aortenklappenersatz; TAVI=

Transkatheter-Aortenklappen-Implantation: TEER= Transkatheter Edge-to-Edge-Therapie

Mitralklappenstenose (MS)

Insgesamt selten: Meist **degenerativ** (Einschränkung der Segelbeweglichkeit über eine Annulusverkalkung) und auch **kongenitale** Formen

Prognose/Verlauf

Der Krankheitsverlauf ist schleichend. Im Mittel vergehen 16 Jahre zwischen dem rheumatischen Fieber und dem Vorliegen einer relevanten Mitralstenose.

Diagnostik

- Anamnese: Eingeschränkte Leistungsfähigkeit, Dyspnoe (NYHA I-IV), Müdigkeit, Hämoptysen, Palpitationen, systemische Embolien bei Vorhofflimmern
- Klinische Befunde (Auskultation in Linksseitenlage, maximal über Herzsspitze): «paukender» 1. Herzton, niederfrequentes Decrescendo-Geräusch in der Diastole, präsystolischer Klick

Apparative Untersuchungen

- · **EKG:** p-Mitrale, Vorhofflimmern
- Transthorakale Echokardiografie (TTE): Beurteilung des Schweregrades, Verkalkung, andere morphologische Veränderungen zur Klassifizierung nach Wilkins vor evt. Ballonvalvuloplastie, Planimetrie der Öffnungsfläche im 3D-Datensatz
- Transösophageale Echokardiografie (TEE): Genaue morphologischen Beurteilung der Klappe und des subvalvulären Apparates, Nachweis/Ausschluss linksatrialer Thromben, 3D zur multiplanaren Quantifizierung der Klappenöffnungsfläche
- Stress-Echokardiografie (Dobutamin, idealerweise auch physikalisch): Bei leichter/mittelschwerer Mitralstenose und ungeklärter Dyspnoe
- Koronarangiografie/ Rechtsherzkatheteruntersuchung: Präoperativ/interventionell Frage nach KHK, simultane Messung PCWP/LV-Druck zur Gradientenbestimmung

Medikamentöse Therapie

- OAK mit VKA z.B. Phenprocoumon (Marcoumar: INR-Ziel 2-3) bei allen Patienten mit Vorhofflimmern oder nach arterieller Embolie (kein NOAKI). Bereits bei mittelschwerer Mitralstenose ist eine OAK zur Verhinderung thromboembolischer Ereignisse auch bei Sinusrhythmus angezeigt bei Vorliegen eines schwer vergrösserten linken Vorhofs (> 60 ml/m² oder > 50 mm Mode Diameter)
- Patienten mit relevanter (d.h. mittelschwerer bis schwerer) Mitralstenose benötigen für eine ausreichende Ventrikelfüllung eine lange Diastole - daher muss (v.a. bei Vorhofflimmern) auf eine gute Frequenzkontrolle geachtet werden.

Katheterbasierte/chirurgische Intervention bei symptomatischen Patienten mit schwerer (< 15 cm²) – sehr schwerer (< 10 cm²) MS:

Perkutane Mitralklappenkommissurotomie (PMC):

- Klasse I B-Empfehlung bei geeigneter Anatomie und bei Kontraindikation oder hohem OP-Risiko auch bei anderen Patienten (LC): Bei suboptimaler Anatomie IIa C
- Die PMC erfolgt mithilfe eines Ballonkatheters bei geeigneten Patienten (Echo-Score nach Wilkins) mit gutem Primärergebnis in > 80% der Patienten und ereignisfreiem Überleben von 30-70% über 10-20 Jahre
- Entscheidung über PMC nach klinischen Daten und Echo-Score: Beste Resultate bei jungen Patienten mit niedrigen Score-Werten, Sinusrhythmus, minimalen Verkalkungen und ohne begleitende Mitralklappeninsuffizienz. Kontraindikationen sind linksatrialer Thrombus, kommissurale schwere Verkalkungen, keine kommissurale Fusion und mehr als leichte Mitralinsuffizienz.

Chirurgische Therapie

- Meist Mitralklappenersatz (MKE) aufgrund der Klappendestruktion
- In sehr spezifischen Fällen kann die Klappe rekonstruiert werden

Trikuspidalinsuffizienz (TI)

 Prävalenz: Häufigste Manifestation der Trikuspidalklappenerkrankung und kann bis zu 65-85% der Bevölkerung weltweit betreffen (moderat-schwer Prävalenz 0.6%, 4% bei über 75jährigen)

Ätiologie und Pathophysiologie

- Die primäre (degenerative) Klappenläsion ist selten: Kongenital (Ebstein-Anomalie, Trikuspidalklappe mit doppelter Orifice, Trikuspidalklappendysplasie, Hypoplasie oder Cleft), Trauma (Brustwandtrauma, Endomyokardbiopsie), andere (Karzinoid-Syndrom, Endomyokardfibrose oder Endokarditis, iv Drogen). Ein zunehmendes Problem sind Schrittmacher oder ICD Elektroden mit Perforationen, Verwachsungen und Verziehungen der Trikuspidalklappensegel und sekundärer TI in 20-30% aller Schrittmacherpatienten.
- Am häufigsten ist die funktionelle (sekundäre) Trikuspidalklappeninsuffizienz (fTI) und betrifft > 90% der Fälle. Als Folge des negativen Remodellings eines überlasteten rechten Ventrikels (RV) kommt es zur Annulusdilatation und sekundär zur fehlenden Koaptation der Trikuspidalklappensegel. Hauptursachen sind eine relevante linksseitige Herzerkrankung oder eine pulmonale Hypertonie. Kann aber auch bei lang anhaltendem Vorhofflimmern und rechter Vorhofvergrösserung mit folgendem Remodelling des Trikuspidalannulus (und eben nicht des RV) beobachtet werden

Diagnostik

- Anamnese/Klinik: Meist unspezifisch und bei der fTI meist auf die linksseitige Herzerkrankung zurückzuführen. Rechtsseitige Symptome treten meist erst im Spätstadium auf mit verminderter Herzleistung (Kurzatmigkeit, Müdigkeit) und venösen Stauung (Hepatosplenomegalie, Gastropathie, Darmstauung, Ödem und Aszites)
- Labor: Leberwerterhöhungen und Einschränkung der Nierenfunktion. Auch bei isolierter schwerer TI ist das BNP (≥ 200 pg/ml) ein negativer prognostischer Parameter.

Klinische und diagnostische Stadieneinteilung

Stadium	Definition	Hämodynamik	Folgen	Klinisches Bild
В	Zunehmende TI	Zentraler Jet < 50% RA, Vena contracta< 7 mm, ERO < 0,4 cm², Regurgita- tions-volumen < 45 ml	keine	asymptomatisch
С	Asymptomati- sche schwere TI	Zentraler Jet ≥ 50% RA, vena contracta ≥ 7 mm, ERO ≥ 0.4 cm², Regurgitationsvolumen ≥ 45 ml, dichtes, dreiecksförmiges cw-Doppler Signal, Systolischer Rückfluss Lebervene	Dilatierter rechter Ventrikel und rechter Vorhof Erhöhter RA Druck mit «c- V» Welle	Erhöhter zen- tralvenöser Druck asymptomatisch
D	Symptomatische schwere TI	siehe C	siehe C	Erhöhter zen- tral-venöser Druck, Belastungsdys- pnoe, Erschöp- fung, Aszites, Ödem

Nach: Leitlinien Valvuläre Herzerkrankung ACC/AHA 2020

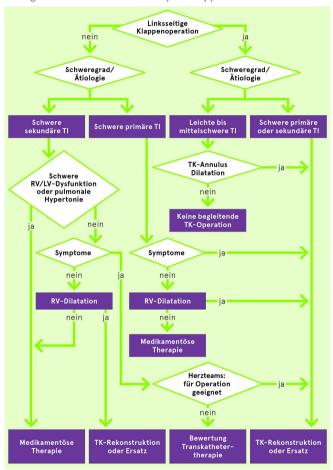
ERO = Effektive Regurgitationsöffnungsfläche: RA = rechter Vorhof, TI = Trikuspidalklappeninsuffizienz

Apparative Diagnostik

- Echokardiografie: Linksseitige Herzfehler und LV Funktion, RV-Funktion (Dimensionen, Funktion: longitudinaler 2D strain der RV Lateralwand, TAPSE, FAC, S-TDI lateral, 3D RV Volumina/RV-Funktion), Grösse Trikuspidalannulus und Klappeninsuffizienz (biplane vena contracta, area contracta (3D), PISA, cw-Signal, hepatischer Rückfluss, flail leaflet, Retraktion, Koaptationsdefizit)
- Transösophageales Echografie: (ggf. ergänzend) Schrittmachersonden, Klappenmorphologie, 3D zur multiplanaren Darstellung der fehlenden Koaptation, Farb-3D für area contracta der TI, Beurteilung der Bildqualität (vor TEE-gesteuertem Eingriff)

- Rechtsherzkatheter/Koronarangiografie: Exakte Bestimmung der rechtsseitigen Drücke (obligat bei schwerer TI), Herzminutenvolumen, KHK beim älteren Patienten zur Risikostratifizierung
- CT: V.a. vor chirurgischer/interventioneller Reparatur zum Ausschluss relevanter Verkalkungen, exakte Anatomie, Ausschluss KHK beim jungen Patienten
- MRI: Rechtsventrikuläre Volumina/Funktion, falls Echo inkonklusiv

Medikamentöse Therapie


Therapie der **Grunderkrankung** bei fTI mit Einsatz von **Diuretika** zur Milderung der Symptome bei schwerer TI (IIa C), auch intensiviert iv zur Vorbereitung perkutaner Eingriffe. In Kombination mit **Mineralo-kortikoid-Rezeptorantagonisten** um die bei Patienten mit Leberstauung beobachtete Aktivierung des Renin-Angiotensin-Aldosteron-Systems abzuschwächen. Diskussion pharmakologischer Therapien zur Senkung des pulmonalen Gefässwiderstands (IIb C).

Wichtig: Alle Patienten frühzeitig (schon bei moderater TI) im Herzteam (Klinischer Kardiologe, Herzinsuffizienzspezialist, Herzchirurg und struktureller/interventioneller Kardiologe) diskutieren um rechtzeitig Therapiemöglichkeiten aufzuzeigen und den Patienten einbeziehen.

Chirurgische und Interventionelle Therapie

- Chirurgische Klappenreparatur/ersatz ist die optimale Korrekturmethode bei schwerer primärer symptomatischer Trikuspidalinsuffizienz. Viele Patienten werden aber zu spät vorgestellt und sind dann inoperabel oder haben ein hohes chirurgisches Risiko aufgrund von Begleitpathologien und schwerer RV-Dysfunktion.
- In den letzten Jahren Entwicklung von Trans-Katheter-Trikuspidalklappeninterventionen (TTVI). Bislang liegen gute Daten vor für die Durchführbarkeit und Sicherheit für für Edge-to-Edge (TEER), Ringannuloplastie als auch Klappenersatz; Langzeitergebnisse sind ausstehend.

Management der schweren Trikuspidalklappeninsuffizienz

Nach: Leitlinien Herzklappenerkrankungen ESC 2021

LV= linker Ventrikel; RV= rechter Ventrikel; TI= Trikuspidalinsuffizienz; TK= Trikuspidalklappe

Klappenerkrankungen und perioperatives Management bei «nicht-kardialen Operationen»

Allgemein gilt bei asymptomatischen Patienten und nicht-kardiale Operation mit niedrigem oder intermediärem Risiko primär Operation unter gutem Monitoring. Und bei hohem Operations-Risiko und bei gleichzeitig niedrigem Risiko für die Klappenoperation sollte nach Diskussion im Herzteam primär der Klappenersatz durchgeführt werden. Nicht-kardiale Eingriffe sind mit vertretbarem Risiko möglich bei Patienten mit relevanter Al und MI (auch schwer), wenn die linksventrikuläre Funktion normal ist. Das gleiche gilt bei asymptomatischen Patienten mit MS ohne relevante pulmonale Hypertonie (sPAP < 50 mmHg). Bei Patienten mit symptomatischer AS und niedrigem Operations-Risiko für den Klappenersatz primär Klappenoperation/-eingriff.

Follow-up bei Klappenerkrankungen postoperativ/ postinterventionell

Allgemeines

- Endokarditisprophylaxe (siehe Seite 283) bei allen implantierten Fremdmaterialien incl. Ring, Neochord, TAVI, Mitraclip, Cardioband
- Regelmässige **Zahnreinigungen** und Kontrollen
- 3 Monate postoperativ **Standortbestimmung** mit Röntgen-Thorax, Labor, Echokardiografie
- Jährliche klinische Verlaufskontrollen (bei Symptomen zeitnah) mit Labor und Echokardiografie (v.a. bei biolog. Prothesen):
 - Biologische Klappen: Degeneration? Gradienten? Paravalvuläre Leckage? Zusatzstrukturen? Bei Verdickung im 2D oder Gradientenanstieg im Cw-Doppler besteht der V.a. Thrombose und eine Therapie mit Vitamin K-Antagonist (VKA) z.B. Phenprocoumon (Marcoumar) mit Ziel-INR 2-3 muss diskutiert werden (kein NOAK)
 - Mechanische Klappen: Hämolyse? INR-Werte? Bei schwieriger Beurteilung/Gradientenzunahme im Echo ggf. TEE und Klappendurchleuchtung

Mechanische Klappen

- VKA-Therapie z.B. Phenprocoumon (Marcoumar): INR-Zielwerte nach Massgabe des Chirurgen/Klappentyp/Risikofaktoren (siehe Tabelle): üblicherweise moderner AKE 2.5 (+ Risikofaktor 3.0): MKE/ TKF 3.0 (kein NOAK!)
- · Zusätzlich Aspirin cardio 100 mg/Tag bei thrombembolischen Ereignissen trotz INR im Zielbereich (IIa C)
- INR-Selbstmonitoring bei mechanischen Klappen und geeigneten Patienten empfohlen (IB)

INR-Zielwert bei mechanischen Klappenprothesen					
Prothesen-Thrombogenität	Patientenbezogene Risikofaktoren ^a				
	Kein Risikofaktor	> 1 Risikofaktor			
Niedrig ^b	2.5	3.0			
Intermediär ^c	3.0	3.5			
Hoch ^d	3.5	4.0			

Nach: Leitlinien Herzklappenerkrankung ESC 2021

a Mitral- oder Trikuspidalklappenersatz; frühere Thromboembolien; AF; Mitralstenose jeglichen Grades: LVEF < 35 %.

b Carbomedics, Medtronic Hall, ATS, Medtronic Open-Pivot, St Jude Medical, Sorin Bicarbon. c Andere Doppelflügelklappen mit unzureichenden Daten.

d Lillehei-Kaster, Omniscience, Starr-Edwards (Ball-Cage), Bjork-Shiley und andere Kippscheibenklappen.

Biologische Klappen

- Nach biologischem Mitral-/Tricuspidalklappenersatz: VKA z.B. Phenprocoumon (Marcoumar) mit Ziel-INR 2.5 für 3 Monate (IIa C) bei niedrigem Blutungsrisiko. Bei biologischer Klappe und VHF VKA oder Edoxaban (ENAVLE trial).
- Nach biologischem Aortenklappenersatz: Aspirin 100 mg/Tag für 3 Monate möglich (Ila C)
- Nach TAVI: Aspirin cardio 100 mg/d oder bei vorbestehender Indikation für OAK (zB VHF) VKA z.B. Phenprocoumon (Marcoumar) mit Ziel-INR 2.5 (Kein Rivaroxaban: Negativstudie, Blutung und Sterblichkeit waren erhöht)

Quelle/Link

- Vahanian A, Beyersdorf F, Praz F et al. ESC/EACTS Guidelines for the management of valvular heart disease, Eur Heart J, 2022:43(7):561-632. https://doi.org/10.1093/eurhearti/ehab395
- · Otto CM, Nishimura RA, Bonow RO et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease. Circulation, 2021;143:e72-e227, https://doi.org/10.1161/ CIR.00000000000000923

Dr. Philipp K. Haager

Dr. Niklas Fhl. Dr. Philipp Baier

Dr. Lucas Jörg

PD Dr. Maurizio Taramasso

Management Perikarderguss

Vereinfachter Algorithmus zur Triage und Management bei Perikarderguss/-tamponade. Nach: ESC Leitlinien Perikarderkrankungen 2015

ESC Triage Score; Nach: ESC Leitlinien Perikarderkrankungen 2015 (Web Agenda)

Quelle/Link

Adler Y, Charron P, Imazio M et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases. Eur Heart J. 2015;36, 2921–2964, https://doi.org/10.1093/eurheartj/ehv318

Dr. Lucas Jörg,

PD Dr. André Dutly, Prof. Dr. Martin Früh,

Dr. Gian-Reto Kleger, Dr Jörg Scheler

Ambulante kardiale Rehabilitation (AKR) und Prävention

Indikationen und Ziele

Indikationen

Eine kardiovaskuläre Rehabilitation ist indiziert gemäss SCPRS (Swiss Working Group for Cardiocascular Prevention, Rehabilitation and Sports Cardiology):

- Nach einer akuten Herzerkrankung: nach Herzinfarkt oder akutem Koronarsyndrom mit oder ohne kathetertechnischem Eingriff
- Bei stabiler KHK mit oder ohne St. n. Katheterintervention.
- Nach Operationen am Herzen und an den Gefässen
- · Beim Vorhandensein multipler Risikofaktoren (z.B. metabolisches Syndrom mit oder ohne chronische Herzkrankheit)
- Bei anderen Herz-Kreislauf-Krankheiten, deren Verlauf durch Rehabilitation günstig beeinflusst wird (z.B. Herzinsuffizienz, Rhythmusstörungen, ICD)

7iele

- Risikostratifizierung für Rezidive im weiteren Verlauf
- Umsetzung einer adäguaten medikamentösen Sekundärprophylaxe
- Information über Krankheit (Diagnostik und Therapie) und Risikofaktoren
- Rekonditionierung nach Immobilisierung
- Korrektur eines vorbestehenden Bewegungsmangels
- Bewegungsprogramm als Vehikel für Lebensstilveränderungen
- Aneignung eines gesunden Lebensstils
- Ernährungsberatung
- Stressbewältigung
- · Raucherentwöhnung

Ambulant/stationär

Für eine ambulante Rehabilitation sprechen

- Wohnortnähe
- · Möglicher Einbezug von Angehörigen
- · Durchführung abgestuft über längere Zeit
- · Teilzeit-Berufstätigkeit möglich

Für eine stationäre Rehabilitation sprechen

- · Komplikationsreicher Verlauf
- · Ausgeprägte Co-Morbiditäten (Begleiterkrankungen)
- · Frühpostoperativer Eintritt erwünscht
- · Erhöhter Pflegebedarf
- · Intensive medizinische Überwachung und Kontrollen nötig
- · Milieuwechsel angezeigt
- · Fehlende Betreuung zu Hause

Anmeldung zur AKR

Vor Antritt einer AKR sind sowohl eine Ergometrie als auch eine Kostengutsprache nötig. Die Kostengutsprache wird seitens der AKR-Administration nach Anmeldung – parallel zum Aufgebot des Patienten – eingeholt.

- Anmeldung von stationär (KSSG intern): Wenn AKR geplant ist, zwingend vor Austritt eine Ergometrie mit dem Auftragsplugin «Ergo vor AKR (stationär)» via Medfolio Auftragsplugin anmelden. Anmeldung bitte schon während Hospitalisation, damit die Kostengutsprache erfolgen kann.
- Anmeldung von extern stationär/ambulant: Adressat für sämtliche Patientenunterlagen ist ausschliesslich das Sekretariat Kardiologie/ AKR: <u>kardiologie@kssg.ch</u> (Betreff: AKR). Vorhandenen, aktuellen Ergometriebericht senden oder auf der Anmeldung vermerken, dass die Eintritts-Ergometrie am KSSG durchgeführt werden soll.

Inhalt des Therapieprogrammes

- Das Programm dauert in der Regel 9-12 Wochen und findet jeweils an 3 Nachmittagen pro Woche statt (Montag, Mittwoch, Freitag).
- · 2×/Woche Ausdauer- und Krafttraining MTT (Medizinische Trainingstherapie)
- · 1×/Woche Wanderung, begleitet durch Physiotherapie und Arzt
- 1×/Woche Informationsvortrag zu diversen Themen
- · 1×/Woche Entspannungsübungen

Dr. Marc Buser Kim Denise Gebhardt

Kardio-Onkologie

Definition

Krebspatienten haben ein erhöhtes Risiko für kardiovaskuläre Morbidität und Mortalität durch: Therapie-assoziierte Nebenwirkungen, gemeinsame Risikofaktoren (Nikotin, arterielle Hypertonie, Alter) und die unmittelbare Interaktion des kardiovaskulärem Systems mit dem hämatologischen und/oder somatischen Tumorleiden. Die Kardio-Onkologie widmet sich als Spezialgebiet dieser besonderen Patientenpopulation.

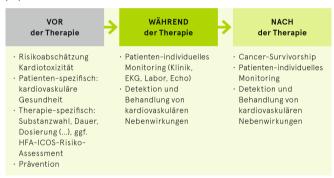


Abb. 1 Abklärung und Monitoring des kardio-onkologischen Patienten vor, während und nach der Therapie; HFA = Heart Failure Association, ICOS = International, Cardio-Oncology Society. HFA-ICOS-Risiko-Assessment (siehe Quellen/Links)

Empfehlungen europäisch, national

Im August 2022 ist die erste <u>ESC Leitlinie Kardio-Onkologie</u> veröffentlicht worden. Auch Schweiz-weit ist eine erste nationale Empfehlung hierzu erschienen, letztere als <u>praktisches Booklet zum Nachschlagen</u> in pdf-Format (siehe auch Links am Kapitelende).

Ziel

Zentrales Anliegen der Kardio-Onkologie ist es, die betroffenen, onkologischen Patienten während ihres gesamten onkologischen Behandlungspfades (vor, während und auch nach der Therapie) anhand einer sinnvollen Risikoabschätzung über ein Monitoring (Klinik, EKG, Echo, kardiale Biomarker) mit Prävention und Therapiemassnahmen optimal zu begleiten und zu überwachen; also vorausschauend und begleitend und nicht erst, wenn schon irreversible Schäden aufgetreten sind.

Wichtig ist möglichst vor Beginn der onkologischen Behandlung zu klären, bei welchen Patienten ein erhöhtes Risiko für kardiotoxische Nebenwirkungen und Komplikationen besteht. Patienten-spezifische Faktoren (z.B. reduzierte LVEF) und Therapie-spezifische Faktoren spielen hier einer Rolle und bestimmen zusammen die Intensität der kardio-onkologischen Mitbetreuung.

Kardiotoxizität spezifischer Tumortherapien

Für mehrere spezifische onkologische Therapien und Substanzen (siehe <u>Tab. 1</u>) liefern die genannten Literaturstellen konkrete Empfehlungen in der Betreuung von onkologischen Patienten im praktischen Alltag und mit welchen Strategien das Kardiotoxizitätsrisiko minimiert werden kann.

Wichtige Substanzklassen mit erhöhtem Kardiotoxizitätsrisiko				
Anthrazykline	Bruton Tyrosinkinase-Inhibitoren			
Her2-gerichtete Therapien	RAF-MEK Inhibitoren			
Immuncheckpoint-Inhibitoren	Zell-basierte Therapie (CAR-T und TIL)			
VEGF/R gerichtete Therapien	Stammzelltransplantation			
BCR-ABL Tyrosinkinase Inhibitoren	Androgen-Deprivations-Therapien			
Fluoropyrimidine	Radiotherapie			
Proteasom Inhibitoren				

Tab. 1

Kardiovaskuläre Nebenwirkungen

Das Spektrum möglicher kardiovaskulärer Nebenwirkungen (NW) ist breit. Eine häufig auftretende und relevante NW ist die Entwicklung einer linksventrikulären Dysfunktion, des weiteren kann es zu thromboembolischen Ereignissen, Herzrhythmusstörungen (u.v.m.) kommen. Bisweilen sind bei den kardio-onkologischen Patienten spezifische Therapiemassnahmen zu berücksichtigen. Kardiovaskuläre NW können früh oder auch erst Jahre nach der onkologischen Therapie auftreten, sie können asymptomatisch oder symptomatisch verlaufen. Ein langfristiges kardiologisches Follow-Up macht bei ausgewählten Patientengruppen Sinn (Cancer-Survivorship).

Für Patienten unter Therapie: Wenn immer vertretbar, ist das Fortführen der onkologischen Therapie, ohne unnötige Unterbrechungen, anzustreben. Die gute interdisziplinäre Kommunikation und die europäischen und nationalen Empfehlungen helfen in der bestmöglichen Betreuung und Behandlung betroffener Patienten.

Quellen/Links

- · ESC Leitlinien: https://doi.org/10.1093/eurheartj/ehac244
- Swiss Cardio-Oncology Booklet: https://www.heartfailure.ch/ images/richtlinien/KONK-Booklet_Final__Version_1.1_06.2022.pdf
- HFA-ICOS-Risiko-Assessment: Lyon, A.R. et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools. Eur J Heart Fail, 22: 1945-1960. https://doi.org/10.1002/ejhf.1920

Dr. Eva Scheler Dr. Martin Fehr

Psychokardiologie

Einleitung

Die **Psychokardiologie** ist eine Spezialdisziplin, die sich mit den wechselseitigen Zusammenhängen von psychischen Aspekten und Herzerkrankungen beschäftigt.

Praxisrelevante Hinweise für den kardiologischen Alltag: Wer braucht psychokardiologische Unterstützung?

Eine kardiovaskuläre Erkrankung stellt ein kritisches Lebensereignis dar. Die Verarbeitung verlangt nach einer psychischen Anpassungsleistung. Es besteht ein erhöhtes Risiko für eine psychische Erkrankung abhängig von der psychosozialen Vorbelastung, Vorerkrankungen und den Ressourcen in der Bewältigung. Die häufigsten Komorbiditäten sind Angsterkrankungen, Depressionen und Traumafolgestörungen, welche mit Prävalenzraten von 10-40% auftreten. Folgende Screening-Fragen helfen, psychische Beschwerden zu identifizieren und zur Abklärung in die Psychokardiologie zuzuweisen.

Screeningfragen für psychische Komorbiditäten

Angst

- Besteht eine erhöhte Ängstlichkeit oder wiederkehrende Panikattacken resp. Notfallaufenthalte ohne neuen Befund?
- · Vermeidet der Patient Tätigkeiten oder Orte aus Angst?
- Zeigt sich ein Sicherheitsverhalten mit häufigen Kontrollen und (digitaler) Überwachung?

Depression

- Ist eine vorbestehende Depression diagnostiziert oder werden depressive Symptome berichtet?
- Werden folgende beiden Fragen mit «Ja» beantwortet:
 - 1. Fühlten Sie sich im letzten Monat häufig niedergeschlagen, traurig, bedrückt oder hoffnungslos?
 - 2. Hatten Sie im letzten Monat deutlich weniger Lust und Freude an Dingen, die Sie sonst gerne tun?

- · Bestehen Suizidgedanken?
- Bestehen Schlafstörungen, Tagesmüdigkeit oder Schläfrigkeit?

Trauma/Traumafolgestörungen

- Leidet der Patient unter Flashbacks (Wiedererleben der Situation)?
- Vermeidet der Patient Situationen, welche ein Wiedererleben auslösen können?
- · Bestehen eine übermässige Anspannung und Schreckhaftigkeit?

Ein kardiales Ereignis, aber auch eine Notfallintervention kann traumatisch erlebt werden. Das Trauma per se stellt keine Indikation für eine Psychotherapie dar, sondern wie das Trauma verarbeitet wird und ob sich eine Traumafolgestörung manifestiert.

Therapiemöglichkeiten

Psychotherapie, Entspannungsgruppen, Biofeedback sowie Psychopharmaka zur Behandlung psychischer Störungen.

Die klinische Indikation für Psychopharmaka soll leitliniengerecht **psychiatrisch** geprüft werden unter Abwägung des kardialen Risikos (insb. QTc-Zeit), Inwiefern Antidepressiva, insbesondere SSRIs, das Mortalitätsrisiko senken können, muss durch weitere Forschung geprüft werden. Positive Signale zeigen hierbei Untersuchungen mit Escitalopram, Sertralin und Lithium, Derzeit weisen Sertralin und Escitalopram die günstigsten Interaktionsprofile mit kardiologischen Medikamenten auf. Trotzdem sind regelmässige Blutdruck- und Laborkontrollen durchzuführen. Ferner kann unter SSRL insbesondere in Verbindung mit anderen gerinnungshemmenden Substanzen, eine erhöhte Blutungszeit auftreten. Trizyklische Antidepressiva sollten aufgrund der kardiotoxischen Wirkung, insbesondere natriumantagonistischer Effekt verbunden mit plötzlichem Herztod, in der Regel nicht verordnet werden. Bei Fluoxetin ist zu beachten, dass der aktive Metabolit eine Halbwertszeit von 14 Tagen besitzt und so auch nach Absetzen die Gefahr von Interaktionen mit anderen Medikamenten weiterhin besteht. Bei schweren Depressionen mit psychotischen Symptomen

sollte eine kombinierte Therapie mit Antidepressivum und Neuroleptikum gut abgewogen und entsprechende Interaktionsprofile mit den kardiologischen Medikamenten gut geprüft werden. Ferner müssen Blutdruckschwankungen, insbesondere Hypotonien, die mit Sturzereignissen verbunden sein können, beachtet werden. Benzodiazepine eignen sich als Notfallmedikation, beinhalten aber ein Abhängigkeitspotential und können Angst- und Panikstörungen durch Vermeidung aufrechterhalten (gem. Hesslinger et al., 2002).

Sekundäre Prävention

Im Sinne der Sekundärprävention vor einem erneuten kardialen Ereignis sind untenstehende psychosoziale Risikofaktoren und Ressourcen evident. Bestehen Defizite, kann im Rahmen der Psychotherapie der Motivationsaufbau sowie auch die Verhaltensänderung unterstützt werden.

Stress und Belastung

- Berichtet der Patient von einer subjektiv wahrgenommenen erhöhten Belastung, insbesondere von chronischer Belastung. dauerhafter Höchstleistung, Konflikte (beruflich/privat)?
- Fehlen protektive Faktoren (Freizeit, Beziehungen etc.)?

Vitale Erschöpfung

Berichtet der Patient oder Hausarzt von vorbestehenden (meist 6 Monate vor Eintritt eines Infarkts) Symptomen einer schweren Erschöpfung und/oder depressiven Episoden, die die Betroffenen zu ihrem Arzt führten?

Krankheitsverarbeitung und Coping-Strategien

- Ist der Patient gegenüber Veränderungen durch das kardiale Ereignis negativ eingestellt (Medikamenten-Einnahme, Rauchstopp, Rehabilitation etc.)?
- Entsteht der Eindruck, der Patient wird die Empfehlungen der Ärzte nicht umsetzen?
- · Möchte der Patient zu viel auf einmal verändern und besteht die Gefahr der Überbelastung?

- Fehlen dem Patienten realistische, gestaffelte Ziele zur Verarbeitung?
- Sind allgemein mangelnde Ressourcen (Arbeitsplatz, Familie, Freunde, Finanzen, Sprache) wahrnehmbar?

Schichtzugehörigkeit

 Kommt der Patient aus einer niedrigen sozialen Schicht? Besteht eine schlechte Schulbildung, keine/schlechte Berufsausbildung, wenig Einkommen oder soziale Unterstützung?

Je niedriger die soziale Schicht, desto grösser ist die Wahrscheinlichkeit einer Herzerkrankung wie auch einer psychischen Erkrankung. Dieser Zusammenhang gilt unabhängig von einem Lebensstil, der häufig mit einem niederen sozioökonomischen Status assoziiert ist (Rauchen, ungesundere Ernährung, weniger Bewegung). Ein psychosoziales Helfernetz ist besonders in dieser Schicht wichtig, z.B. durch Einbezug des Sozialdienstes.

Quellen/Links

 Heßlinger, B. et al. Komorbidität von depressiven Störungen und kardiovaskulären Erkrankungen Implikationen für Diagnostik, Pharmako- und Psychotherapie. Nervenarzt 73, 205–218 (2002). https://doi.org/10.1007/s001150101168

Rahel Altwegg Stefan Brokatzky

Fahreignungsbeurteilung bei kardiologischen Patienten

Einleitung

2019 wurden in Zusammenarbeit der Schweizerischen Gesellschaft für Kardiologie (SGK) und der Sektion Verkehrsmedizin der Schweizerischen Gesellschaft für Rechtsmedizin (SGRM) gemeinsame Richtlinien erarbeitet, welche sowohl die einzelnen kardiologischen Krankheitsprobleme als auch die entsprechend verkehrsmedizinisch relevanten Aspekte berücksichtigen. Dies in Anlehnung an internationale Richtlinien (v.a. dieienigen der deutschen Gesellschaft für Kardiologie) sowie basierend auf den schweizerischen Gesetzesgrundlagen betreffend die medizinischen Mindestanforderungen gemäss VZV (Verkehrszulassungsverordnung) für die niedrigen (1. Gruppe) sowie die höheren (2. Gruppe) Führerausweiskategorien. Die folgenden Richtlinien sind tabellenübergreifend zu verwenden: So sind beispielsweise bei Vorliegen einer koronaren Herzkrankheit, begleitet von einer Herzinsuffizienz und einem Linksschenkelblock, Tab. 2 «Fahreignung bei Herzinsuffizienz», Tab. 3 «Fahreignung bei koronarer Herzkrankheit» sowie Tab. 4 «Fahreignung bei bradykarden Arrhythmien» zu berücksichtigen.

Diese Richtlinien sollen für die individuelle Beurteilung von kardiologisch-verkehrsmedizinischen Fragestellungen beigezogen werden. In Zweifelsfällen, insbesondere auch bei komplexen Fragestellungen (z.B. bei zusätzlich relevanten Krankheitsproblemen und höheren Führerausweiskategorien), muss jedoch zu einer verkehrsmedizinisch-spezialärztlichen Fahreignungsabklärung geraten werden.

Für weiterführende Informationen verweisen wir auf die Originalarbeit (s. Quelle/Link Seite 336).

Führerausweiskategorien

1. Gruppe	2. Gruppe	
(niedrige Führerausweiskategorien)	(höhere Führerausweiskategorien)	
Führerausweis-Kategorien A und B	Führerausweis-Kategorien C und D	
Führerausweis-Unterkategorien A1 und B1	Führerausweis-Unterkategorien C1 und D1	
Führerausweis-Spezialkategorien F, G und M	Bewilligung zum berufsmassigen Personen-	
Führerausweis-Unterkategorie D1, falls Beschränkung auf 3.5 t	transport, Verkehrsexperten	

Fahreignung bei Synkopen

	1. Gruppe	2. Gruppe
Vasovagale Synkope		
– einmalige vasovagale Syn- kope, nicht im Sitzen/beim Fahren	fahrgeeignet	fahrgeeignet
– rezidivierende vasovagale Synkopen oder einmalige vasovagale Synkope im Sit- zen/beim Fahren	fahrgeeignet, Wartefrist 1 Monat ab letztem Ereignis	Einzelfallbeurteilung, Warte- frist minimal 3 Monate ab letztem Ereignis
Synkope mit auslösenden, behebbaren Faktoren (z.B. Schmerz, Anämie, Fieber, Dehydratation)	fahrgeeignet, sobald auslö- sender Faktor behoben	fahrgeeignet, sobald auslö- sender Faktor behoben
Synkope bei Brady- oder Tachyarrhythmien	siehe Tab. 4, 5, und 6	siehe Tab. 4, 5, und 6
Unklare Synkope ohne Pro- dromi, welche eine adäquate Schutzreaktion des Patienten erlauben	fahrgeeignet, Wartefrist 3 Monate ab letztem Ereignis	nicht fahrgeeignet bis Dia- gnose gestellt und Therapie eingeleitet. Bei fehlender Diagnose Wartefrist minimal 12 Monate ab letztem Ereig- nis.

Tab. 1

Herzinsuffizienz (beliebige Aetiologie)

	1. Gruppe	2. Gruppe
NYHA I	fahrgeeignet	fahrgeeignet, falls LVEF > 35% und Belastungstest nor- mal*
NYHA II	fahrgeeignet	fahrgeeignet, falls LVEF > 35% und Belastungstest nor- mal*
NYHA III	fahrgeeignet, falls stabil und kompensiert	nicht fahrgeeignet
NYHA IV	nicht fahrgeeignet	nicht fahrgeeignet
Herzunterstützendes System (left ventricular assist device)	Einzelfallbeurteilung	nicht fahrgeeignet
Status nach Herztransplantation	fahrgeeignet nach erfolgrei- cher Rekonvaleszenz	fahrgeeignet, falls NYHA I oder II und LVEF > 35% und Belastungstest normal, War- tefrist 3 Monate*

Tab. 2

Fahreignung bei Koronarer Herzkrankheit

	1. Gruppe	2. Gruppe
Akutes Koronarsyndrom (konservative und invasive Therapie)	fahrgeeignet, Wartefrist 1 Woche sofern keine Ruhe- beschwerden (nicht CCS IV)	fahrgeeignet, falls asympto- matisch, LVEF > 35% und Belastungstest normal*, Wartefrist 6 Wochen
Elektive PCI	fahrgeeignet	fahrgeeignet
Koronare Bypassoperation	fahrgeeignet nach erfolgrei- cher Rekonvaleszenz	fahrgeeignet, falls NYHA I oder II, LVEF > 35% und Belastungstest normal*, Wartefrist 3 Monate
Stabile Koronare Herz- krankheit	fahrgeeignet, sofern keine Ruhebeschwerden (nicht CCS IV)	fahrgeeignet, falls asympto- matisch, LVEF > 35% und jährlicher Belastungstest normal*

Tab. 3

^{*} Keine Angina pectoris, keine relevanten Arrhythmien, körperliche Belastbarkeit > 4 METs. Pathologisches EKG mit bildgebendem Ischämietest abgeklärt.

^{*} Keine Angina pectoris, keine relevanten Arrhythmien, körperliche Belastbarkeit > 4 METs. Pathologisches EKG mit bildgebendem Ischämietest abgeklärt (siehe auch Tab. 2 «Herzinsuffizienz»).

Fahreignung bei bradykarden Arrhythmien

	1. Gruppe	2. Gruppe
Sinusknotendysfunktion (SA-Blockierung, Sinusar- rest)		
- asymptomatisch	fahrgeeignet	fahrgeeignet, falls Pausen < 6 s. Ansonsten fahrgeeignet nach PM-Implantation (siehe Tab. 7).
- symptomatisch	fahrgeeignet nach PM- Implantation (siehe Tab. 7)	fahrgeeignet nach PM- Implantation (siehe Tab. 7)
AV-Block I	fahrgeeignet	fahrgeeignet
AV-Block II (Wenckebach, Mobitz I)	fahrgeeignet	fahrgeeignet
AV-Block II (Mobitz II)		
- paroxysmal, im Schlaf	fahrgeeignet	fahrgeeignet
- im Wachzustand, unabhän- gig ob paroxysmal oder per- manent und unabhängig von Symptomen	fahrgeeignet nach PM- Implantation (siehe Tab. 7)	fahrgeeignet nach PM- Implantation (siehe Tab. 7)
AV-Block III (angeboren)	fahrgeeignet, falls asympto- matisch	fahrgeeignet nach PM- Implantation (siehe Tab. 7)
AV-Block III (erworben), unabhängig von Sympto- men	fahrgeeignet nach PM- Implantation (siehe Tab. 7)	fahrgeeignet nach PM- Implantation (siehe Tab. 7)
Rechtsschenkelblock/Iso- lierter Hemiblock	fahrgeeignet	fahrgeeignet
Linksschenkelblock	fahrgeeignet	fahrgeeignet nach Echokar- diografie
Bifaszikuläre Blockbilder mit normaler PQ-Zeit	fahrgeeignet	fahrgeeignet
Bifaszikuläre Blockbilder mit verlängerter PQ-Zeit	fahrgeeignet, falls asympto- matisch	fahrgeeignet, falls asympto- matisch

Tab. 4

Fahreignung bei supraventrikulären Arrhythmien

	1. Gruppe	2. Gruppe
Regelmässige supraventri- kuläre Tachykardien (AVNRT, AVRT, ektope atriale Tachykardien, Vor- hofflattern)		
- ohne erhebliche Sym- ptome*	fahrgeeignet	fahrgeeignet
- mit erheblichen Sympto- men*	fahrgeeignet nach Radiofre- quenzablation, Wartefrist 4 Wochen und kardiologische Kontrolle	fahrgeeignet nach Radiofrequenzablation, Wartefrist 4 Wochen und kardiologische Kontrolle
Präexzitation («WPW», ohne Tachykardieana- mnese)	fahrgeeignet	fahrgeeignet
Vorhofflimmern		
- ohne erhebliche Sym- ptome*	fahrgeeignet	fahrgeeignet
– mit erheblichen Sympto- men*	fahrgeeignet nach effektiver Therapie (medikamentös/ interventionell/Herzschritt- macher), Wartefrist 4 Wochen und kardiologische Kontrolle	fahrgeeignet nach effektiver Therapie (medikamentös/ interventionell/Herzschritt- macher), Wartefrist 4 Wochen und kardiologische Kontrolle

Tab. 5

^{*} starker Schwindel, Präsynkope, Synkope

Fahreignung bei ventrikulären Arrhythmien

Keine strukturelle Herzer- krankung, keine lonenka- nalerkrankung (typischer- weise aus dem RVOT oder dem LVOT stammend)	1. Gruppe	2. Gruppe
Ventrikuläre Extrasystolen	fahrgeeignet	fahrgeeignet
Nicht-anhaltende Kam- mertachykardie (> 3 Schläge, > 120/min, < 30 s) ohne erhebliche Sym- ptome*	fahrgeeignet	Einzelfallbeurteilung
Anhaltende Kammertachy- kardie (> 30 s) ohne erheb- liche Symptome*	fahrgeeignet	Einzelfallbeurteilung
Nicht-anhaltende und anhaltende Kammertachy- kardie mit erheblichen Symptomen*	fahrgeeignet nach effektiver Therapie (medikamentös/, Ablation), Wartefrist 4 Wochen und kardiologische Kontrolle	fahrgeeignet nach effektiver Therapie (medikamentös/ Ablation), Wartefrist 4 Wochen und kardiologische Kontrolle
Idiopathisches Kammer- flimmern	siehe Tab. 7	nicht fahrgeeignet

Tab. 6a

^{*} starker Schwindel, Präsynkope, Synkope

Strukturelle Herzerkran- kung (typischerweise bei KHK oder dilatativer Kar- diomyopathie)	1. Gruppe	2. Gruppe
Ventrikuläre Extrasystolen	fahrgeeignet	fahrgeeignet
Anhaltende Kammertachy- kardie mit/ohne Sym- ptome oder Kammerflim- mern	siehe Tab. 7	nicht fahrgeeignet (siehe Tab. 7)
Nicht anhaltende Kam- mertachykardie		
- ohne erhebliche Sym- ptome*	fahrgeeignet	Einzelfallbeurteilung
– mit erheblichen Sympto- men*	fahrgeeignet nach effektiver Therapie (Medikamente, Ablation, ICD), Wartefrist 3 Monate und kardiologische Kontrolle	nicht fahrgeeignet (siehe Tab. 7)

Tab. 6b

^{*} starker Schwindel, Präsynkope, Synkope

Fahreignung bei Devices (PM, ICD, CRT)

PM	1. Gruppe	2. Gruppe
PM-Implantation oder PM- Wechsel		
- mit Synkopen in der Ana- mnese	fahrgeeignet, Wartefrist 1 Woche	fahrgeeignet, Wartefrist 3 Monate und kardiologische Kontrolle. Falls nur PM-Wechsel: War- tefrist 2 Wochen
- ohne Synkopen in der Ana- mnese	fahrgeeignet, Wartefrist 1 Woche	fahrgeeignet, Wartefrist 4 Wochen und kardiologische Kontrolle. Falls nur PM-Wechsel: War- tefrist 2 Wochen

Tab. 7a

Fahreignung bei Devices (PM, ICD, CRT) - Teil 2

ICD	1. Gruppe	2. Gruppe
Primärprävention	fahrgeeignet, Wartefrist 1 Woche	nicht fahrgeeignet
Sekundärprävention	fahrgeeignet, Wartefrist 3 Monate	nicht fahrgeeignet
Nach einmaligem, adäquatem Schock	fahrgeeignet, Wartefrist 3 Monate	nicht fahrgeeignet
ATP einer Kammertachy- kardie		
- mit erheblichen Sympto- men*	fahrgeeignet, Wartefrist 3 Monate	nicht fahrgeeignet
- ohne erhebliche Sym- ptome*	fahrgeeignet	nicht fahrgeeignet
Nach inadäquatem Schock	fahrgeeignet nach Beseitigung der zugrundeliegenden Ursache	nicht fahrgeeignet
Nach Aggregatswechsel	fahrgeeignet, Wartefrist 1 Woche	nicht fahrgeeignet
Nach Sondenwechsel	fahrgeeignet, Wartefrist 1 Woche	nicht fahrgeeignet
Verweigerung eines ICD		
- primärpräventiv	fahrgeeignet	nicht fahrgeeignet
- sekundärpräventiv	fahrgeeignet, Wartefrist 7 Monate nach letztmaliger ventrikulärer Arrhythmie	nicht fahrgeeignet
CRT-D bei nicht-ischämi- scher Kardiopathie in der Primärprävention	fahrgeeignet, Wartefrist 1 Woche	fahrgeeignet, falls eine anhaltende (im Allgemeinen > 6 Monate) Verbesserung der LVEF auf > 50% doku- mentiert ist und der D-Teil deaktiviert wird

Tab. 7b

^{*} starker Schwindel, Präsynkope, Synkope

Fahreignung bei weiteren kardiovaskulären Erkrankungen

	1. Gruppe	2. Gruppe
Herzklappenerkrankungen (exklusive Aortenstenose)		
- asymptomatisch	fahrgeeignet	fahrgeeignet, falls LVEF > 35% und keine schwere Mitralstenose
- symptomatisch	Beurteilung gemäss Tab. 2	fahrgeeignet, falls NYHA I oder II, LVEF > 35% und keine schwere Mitralstenose
– nach Herzklappenoperation	fahrgeeignet nach erfolgrei- cher Rekonvaleszenz	fahrgeeignet, falls NYHA I oder II und LVEF > 35%, Wartezeit 3 Monate
Aortenstenose (aortal, subaortal, supraa- ortal)		
- asymptomatisch	fahrgeeignet	fahrgeeignet, falls leichte bis mittelschwere Stenose, regelmässige (jährliche) Ree- valuation
- symptomatisch	nicht fahrgeeignet	nicht fahrgeeignet
– nach Herzklappenoperation	fahrgeeignet nach erfolgrei- cher Rekonvaleszenz	fahrgeeignet, falls NYHA I oder II und LVEF > 35%, Wartezeit 3 Monate
Kongenitale Herzerkran- kungen (GUCH)		
- asymptomatisch	fahrgeeignet	Einzelfallbeurteilung
- symptomatisch	Einzelfallbeurteilung	fahrgeeignet, bei Herzinsuffizienz oder Arrhythmien s. entsprechende Tab.
Hypertrophe Kardiomyo- pathien		
- asymptomatisch	fahrgeeignet	nicht fahrgeeignet, falls Richtlinien eine ICD-Implan- tation empfehlen
- symptomatisch	Beurteilung gemäss Tab. 1 und 2	nicht fahrgeeignet
Angeborenes Long-QT- Syndrom	fahrgeeignet falls ICD-Indikation: siehe Tab. 7	Einzelfallbeurteilung nicht fahrgeeignet, falls ICD- Indikation

Tab. 8

	1. Gruppe	2. Gruppe
Brugada-Syndrom	fahrgeeignet falls ICD-Indikation: Tab. 7	Einzelfallbeurteilung nicht fahrgeeignet, falls ICD- Indikation
Arterielle Hypertonie	fahrgeeignet, falls keine zerebrale Symptomatik oder Sehstörungen (maligne Hypertonie) vorliegen	fahrgeeignet, falls systolische Blutdruckwerte < 180 mmHg oder diastolische Blutdruck- werte < 110 mmHg unter Therapie und keine zereb- rale Symptomatik oder Seh- störungen (maligne Hyperto- nie) vorliegen
Pulmonale Hypertonie	fahrgeeignet, falls NYHA I-III	fahrgeeignet, falls NYHA I-II und keine Dauersauer- stofftherapie
Thorakales Aortena- neurysma	fahrgeeignet, falls Diameter ≤ 6.5 cm (Marfansyndrom ≤ 5.5 cm)	fahrgeeignet, falls Diameter ≤ 5.5 cm (Marfansyndrom ≤ 5.0 cm)

Quelle/Link

Buser M, Christen S, Schaer B, Fellay M, Pfäffli M. Fahreignung und kardiovaskuläre Erkrankungen: gemeinsame Richtlinien der Schweizerischen Gesellschaft für Kardiologie und der Schweizerischen Gesellschaft für Rechtsmedizin, Cardiovasc Med. 2019:22:w02023. https://doi.org/10.4414/cvm.2019.02023

Dr. Marc Buser

Prof. Dr. Peter Ammann

Dr. Bruno Liniger Prof. Dr. Hans Rickli

Sponsoren

Mit freundlicher Unterstützung von

Legal Disclaimer

Legal Disclaimer

Das Kardiovaskuläre Manual 2023 wurde von den Autoren des Kantonsspitals St.Gallen völlig unabhängig erarbeitet. Die Firmen Abbott Medical (Schweiz) AG, Amarin Switzerland GmbH, AMGEN Switzerland GmbH, AstraZeneca AG, B. Braun Medical AG, Bayer (Schweiz) AG, BIOTRONIK Schweiz AG, Boehringer Ingelheim (Schweiz) GmbH, Bristol-Myers Squibb SA, Daiichi-Sankyo (Schweiz) AG, MicroPort CRM GmbH, Novo Nordisk Pharma AG, Vifor Pharma Switzerland SA und ZOLL Medical Switzerland AG haben keinerlei Einfluss auf den Inhalt genommen.

Die Empfehlungen können inhaltlich von den Informationen in den behördlich genehmigten Fachinformationen der erwähnten Arzneimittel abweichen. Die oben genannten Unternehmen empfehlen keine Anwendung ihrer Arzneimittel bzw. medizinischen Geräten ausserhalb der zugelassenen Indikationen und Dosierungen.

Das Kardiovaskuläre Manual 2023 wird den Ärzten und weiteren interessierten Fachpersonen zur eigenverantwortlichen Verwendung überlassen. Die Abgabe wird von Abbott Medical (Schweiz) AG, Amarin Switzerland GmbH, AMGEN Switzerland GmbH, AstraZeneca AG, B. Braun Medical AG, Bayer (Schweiz) AG, BIOTRONIK Schweiz AG, Boehringer Ingelheim (Schweiz) GmbH, Bristol-Myers Squibb SA, Daiichi-Sankyo (Schweiz) AG, MicroPort CRM GmbH, Novo Nordisk Pharma AG, Vifor Pharma Switzerland SA und ZOLL Medical Switzerland AG nicht mit promotionellen Aussagen zu Arzneimitteln/medizinischen Geräten bzw. Indikationen verbunden.