Solutions to Chapter 6 Exercises

6.1 Solutions

1. An equation is balanced when the same number of each element is represented on the reactant and product sides. Equations must be balanced to accurately reflect the law of conservation of matter.

3. (a) PCl5(s) + H2O(l) ⟶ POCl3(l) + 2HCl(aq);
(b) 3Cu(s) + 8HNO3(aq) ⟶ 3Cu(NO3)2(aq) + 4H2O(l) + 2NO(g);
(c) H2(g) + I2(s) ⟶ 2HI(s);
(d) 4Fe(s) + 3O2(g) ⟶ 2Fe2O3(s);
(e) 2Na(s) + 2H2O(l) ⟶ 2NaOH(aq) + H2(g);
(f) (NH4)2Cr52O7(s) ⟶ Cr2O3(s) + N2(g) + 4H2O(g);
(g) P4(s) + 6Cl2(g) ⟶ 4PCl3(l);
(h) PtCl4(s) ⟶ Pt(s) + 2Cl2(g)

5. (a) CaCO3(s) ⟶ CaO(s) + CO2(g);
(b) 2C4H10(g) + 13O2(g) ⟶ 8CO2(g) + 10H2O(g);
(c) MgC12(aq) + 2NaOH(aq) ⟶ Mg(OH)2(s) + 2NaCl(aq);
(d) 2H2O(g) + 2Na(s) ⟶ 2NaOH(s) + H2(g)

7. (a) Ba(NO3)2, KClO3;
(b) 2KClO3(s) ⟶ 2KCl(s) + 3O2(g);
(c) 2Ba(NO3)2(s) ⟶ 2BaO(s) + 2N2(g) + 5O2(g);
(d) 2Mg(s) + O2(g) ⟶ 2MgO(s); 4Al(s) + 3O2(g) ⟶ 2Al2O3(g);
4Fe(s) + 3O2(g) ⟶ 2Fe2O3(s)

9. (a) 4HF(aq) + SiO2(s) ⟶ SiF4(g) + 2H2O(l);
(b) complete ionic equation:
2Na+(aq) + 2F(aq) + Ca2+(aq) + 2Cl(aq) ⟶ CaF2(s) + 2Na+(aq) + 2Cl(aq),
net ionic equation: 2F(aq) + Ca2+ (aq) ⟶ CaF2(s)

11. (a) 2K+(aq) + C2O42−(aq) + Ba2+(aq) + 2OH(aq) ⟶ 2K+(aq)+2OH(aq) + BaC2O4(s)(complete)
Ba2+(aq) + C2O42−(aq) ⟶ BaC2O4(s)(net)
(b) Pb2+(aq)+2NO3(aq) + 2H+(aq) + SO42−(aq) ⟶ PbSO4(s) + 2H+(aq) + 2NO3(aq)(complete)
Pb2+(aq) + SO42−(aq)⟶PbSO4(s)(net)
(c) CaCO3(s) + 2H+(aq) + SO42−(aq) ⟶ CaSO4(s) + CO2(g) + H2O(l) (complete)
CaCO3(s) + 2H+(aq) + SO42−(aq) ⟶ CaSO4(s) + CO2(g) + H2O(l) (net)

6.2 Solutions

1. (a) oxidation-reduction (addition); (b) acid-base (neutralization); (c) oxidation-reduction (combustion)

3. It is an oxidation-reduction reaction because the oxidation state of the silver changes during the reaction.

5.(a) H +1, P +5, O −2; (b) Al +3, H +1, O −2; (c) Se +4, O −2; (d) K +1, N +3, O −2; (e) In +3, S −2; (f) P +3, O −2

7. (a) acid-base; (b) oxidation-reduction: Na is oxidized, H+ is reduced; (c) oxidation-reduction: Mg is oxidized, Cl2 is reduced; (d) acid-base; (e) oxidation-reduction: P3− is oxidized, O2 is reduced; (f) acid-base

9. (a) 2HCl(g) + Ca(OH)2(s) ⟶ CaCl2(s) + 2H2O(l);
(b) Sr(OH)2(aq) + 2HNO3(aq) ⟶ Sr(NO3)2(aq) + 2H2O(l)

11. (a) 2Al(s) + 3F2(g) ⟶ 2AlF3(s);
(b) 2Al(s) + 3CuBr2(aq) ⟶ 3Cu(s) + 2AlBr3(aq);
(c) P4(s) + 5O2(g) ⟶ P4O10(s);
(d) Ca(s) + 2H2O(l) ⟶ Ca(OH)2(aq) + H2(g)

13. (a) Mg(OH)2(s) + 2HClO4(aq) ⟶ Mg2+(aq) + 2ClO4(aq) + 2H2O(l);
(b) SO3(g) + 2H2O(l) ⟶ H3O+(aq) + HSO4(aq), (a solution of H2SO4);
(c) SrO(s) + H2SO4(l) ⟶ SrSO4(s)+H2O

15. H2(g) + F2(g) ⟶ 2HF(g)

17. 2NaBr(aq) + Cl2(g) ⟶ 2NaCl(aq) + Br2(l)

19. 2LiOH(aq) + CO2(g) ⟶ Li2CO3(aq) + H2O(l)

21. (a) Ca(OH)2(s) + H2S(g) ⟶ CaS(s) + 2H2O(l);
(b) Na2CO3(aq) + H2S(g) ⟶ Na2S(aq) + CO2(g) + H2O(l)

23. (a) step 1: N2(g) + 3H2(g) ⟶ 2NH3(g),
step 2: NH3(g) + HNO3(aq) ⟶ NH4NO3(aq) ⟶ NH4NO3(s)(after drying);
(b) H2(g)+Br2(l) ⟶ 2HBr(g);
(c) Zn(s) + S(s) ⟶ ZnS(s)
and ZnS(s) + 2HCl(aq) ⟶ ZnCl2(aq) + H2S(g)

25. (a) Sn4+(aq) + 2e− ⟶ Sn2+(aq),
(b) [Ag(NH3)2]+(aq) + e− ⟶ Ag(s) + 2NH3(aq);
(c) Hg2Cl2(s) + 2e− ⟶ 2Hg(l) + 2Cl(aq);
(d) 2H2O(l) ⟶ O2(g) + 4H+(aq) + 4e;
(e) 6H2O(l) + 2IO3(aq) + 10e− ⟶ I2(s) + 12OH(aq);
(f) H2O(l) + SO32−(aq) ⟶ SO42−(aq) + 2H+(aq) + 2e;
(g) 8H+(aq) + MnO4(aq) + 5e− ⟶ Mn2+(aq) + 4H2O(l);
(h) Cl(aq) + 6OH(aq) ⟶ ClO3(aq) + 3H2O(l) + 6e

27. (a) Sn2+(aq) + 2Cu2+(aq) ⟶ Sn4+(aq) + 2Cu+(aq);
(b) H2S(g) + Hg22+(aq) + 2H2O(l) ⟶ 2Hg(l) + S(s) + 2H3O+(aq);
(c) 5CN(aq) + 2ClO2(aq) + 3H2O(l) ⟶ 5CNO(aq) + 2Cl(aq) + 2H3O+(aq);
(d) Fe2+(aq) + Ce4+(aq) ⟶ Fe3+(aq) + Ce3+(aq);
(e) 2HBrO(aq) + 2H2O(l) ⟶ 2H3O+(aq) + 2Br(aq)+O2(g)

29. (a) 2MnO4(aq) + 3NO2(aq) + H2O(l) ⟶ 2MnO2(s) + 3NO3(aq)+2OH(aq);
(b) 3MnO42−(aq) + 2H2O(l) ⟶ 2MnO4(aq) + 4OH(aq) + MnO2(s)(in base);
(c) Br2(l) + SO2(g) + 2H2O(l) ⟶ 4H+(aq) + 2Br(aq) + SO42−(aq)

6.3 Solutions

**1. (a) volume HCl solution⟶mol HCl⟶mol GaCl3; (b) 1.25 mol GaCl3, 2.2 × 102 g GaCl3

**3. (a) 5.337 × 1022 molecules; (b) 10.41 g Zn(CN)2

**5. SiO2+3C⟶SiC+2CO, 4.50 kg SiO2

**7. 5.00 × 103 kg

**9. 1.28 × 105 g CO2

11. 161.40 mL KI solution

**13. 176 g TiO2

6.4 Solutions

1. The limiting reactant is Cl2.

3. Percent yield = 31%

5. g CCl4 ⟶ mol CCl4 ⟶ mol CCl2F2 ⟶ g CCl2F2, percent yield = 48.3%

7. percent yield = 91.3%

9. Convert mass of ethanol to moles of ethanol; relate the moles of ethanol to the moles of ether produced using the stoichiometry of the balanced equation. Convert moles of ether to grams; divide the actual grams of ether (determined through the density) by the theoretical mass to determine the percent yield; 87.6%

11. The conversion needed is mol Cr ⟶ mol H3PO4. Then compare the amount of Cr to the amount of acid present. Cr is the limiting reactant.

13. Na2C2O4 is the limiting reactant. percent yield = 86.6%

15. Only four molecules can be made.

17. This amount cannot be weighted by ordinary balances and is worthless.

6.5 Solutions

1. 3.4 × 10−3 M H2SO4

3. 9.6 × 10−3 M Cl

5. 22.4%

7. The empirical formula is BH3. The molecular formula is B2H6.

9. 49.6 mL

11. 13.64 mL

13. 1.22 M

15. 34.99 mL KOH

17. The empirical formula is WCl4.

License

Icon for the Creative Commons Attribution-NonCommercial 4.0 International License

Chemistry in Everyday Life Copyright © by Michele Lansigan is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted.

Share This Book