16
Chapter Outline
- Additional resources for quantitative data analysis (3 minute read)
- Reporting quantitative results (8 minute read)
Content warning: examples in this chapter contain a brief discussion of violence against women.
16.1 Additional resources for quantitative data analysis
Learning Objectives
Learners will be able to…
- Identify open textbooks and resources to assist with statistical analysis.
- Identify open source and commercial software used to perform statistical analysis.
While you are affiliated with a university, it is likely that you will have access to some kind of commercial statistics software. Examples in the previous section uses SPSS, the most common one our authoring team has seen in social work education. Like its competitors SAS and STATA, SPSS is expensive and your license to the software must be renewed every year (like a subscription). Even if you are able to install commercial statistics software on your computer, once your license expires, your program will no longer work. We believe that forcing students to learn software they will never use is wasteful and contributes to the (accurate, in many cases) perception from students that research class is unrelated to real-world practice. SPSS is more accessible due to its graphical user interface and does not require researcher to learn to learn basic computer programming, but it is prohibitively costly if a student wanted to use it to measure practice data in their agency post-graduation.
Instead, we suggest getting familiar with JASP Statistics, a free and open-source alternative to SPSS developed and supported by the University of Amsterdam. It has a similar user interface as SPSS, and should be similarly easy to learn. Moreover, usability upgrades from SPSS like generating APA formatted tables make it a compelling option. While a great many of my students will rely on statistical analyses of their programs and practices in reports to funders, it is unlikely that any will use SPSS. Browse JASP’s how-to guide or consult this textbook Learning Statistics with JASP: A Tutorial for Psychology Students and Other Beginners, written by Danielle J. Navarro, David R. Foxcroft, and Thomas J. Faulkenberry.
Another open source statistics software package is R (a.k.a. The R Project for Statistical Computing). R uses a command line interface, so you will need to learn how to program computer code in order to use it. Luckily, R is the most commonly used statistics software in the world, and the community of support and guides for using R are omnipresent online. For beginning researchers, consult the textbook Learning Statistics with R: A tutorial for psychology students and other beginners by Danielle J. Navarro.
While statistics software is sometimes needed to perform advanced statistical tests, most univariate and bivariate tests can be performed in spreadsheet software like Microsoft Excel, Google Sheets, or the free and open source LibreOffice Calc. Microsoft offers a includes a ToolPak to perform complex data analysis as an add-on to Excel. For more information on using spreadsheet software to perform statistics, the open textbook Collaborative Statistics Using Spreadsheets by Susan Dean, Irene Mary Duranczyk, Barbara Illowsky, Suzanne Loch, and Janet Stottlemyer.
Statistical analysis is performed in just about every discipline, and as a result, there are a lot of openly licensed, free resources to assist you with your data analysis. We have endeavored to provide you the basics in the past few chapters, but ultimately, you will likely need additional support in completing quantitative data analysis from an instructor, textbook, or other resource. Browse the Open Textbook Library for statistics resources or look for video tutorials from reputable instructors like this video textbook on statistics by Bryan Koenig.
Key Takeaways
- While the statistics software your school purchases is very expensive, there are free and easy-to-use alternatives you can learn and continue to use post-graduation.
- There are a lot of high quality and free online resources to learn and perform statistical analysis.
16.2 Reporting quantitative results
Learning Objectives
Learners will be able to…
- Write a comprehensive and reputable quantitative research report
So you’ve completed your quantitative analyses and are ready to report your results. We’re going to spend some time talking about what matters in quantitative research reports, but the very first thing to understand is this: openness with your data and analyses is key. You should never hide what you did to get to a particular conclusion and, if someone wanted to and could ethically access your data, they should be able to replicate more or less exactly what you did. While your quantitative report won’t have every single step you took to get to your conclusion, it should have plenty of detail so someone can get the picture.
Below, I’m going to take you through the key elements of a quantitative research report. This overview is pretty general and conceptual, and it will be helpful for you to look at existing scholarly articles that deal with quantitative research (like ones in your literature review) to see the structure applied. Also keep in mind that your instructor may want the sections broken out slightly differently; nonetheless, the content I outline below should be in your research report.
Introduction and literature review
These are what you’re working on building with your research proposal this semester. They should be included as part of your research report so that readers have enough information to evaluate your research for themselves. What’s here should be very similar to the introduction and literature review from your research proposal, where you described the literature relevant to the study you wanted to do. With your results in hand, though, you may find that you have to add information to the literature you wrote previously to help orient the reader of the report to important topics needed to understand the results of your study.
Methods
In this section, you should explicitly lay out your study design—for instance, if it was experimental, be specific about the type of experimental design. Discuss the type of sampling that you used, if that’s applicable to your project. You should also go into a general description of your data, including the time period, any exclusions you made from the original data set and the source—i.e., did you collect it yourself or was it secondary data? Next, talk about the specific statistical methods you used, like t-tests, Chi-square tests, or regression analyses. For descriptive statistics, you can be relatively general—you don’t need to say “I looked at means and medians,” for instance. You need to provide enough information here that someone could replicate what you did.
In this section, you should also discuss how you operationalized your variables. What did you mean when you asked about educational attainment—did you ask for a grade number, or did you ask them to pick a range that you turned into a category? This is key information for readers to understand your research. Remember when you were looking for ways to operationalize your variables? Be the kind of author who provides enough information on operationalization so people can actually understand what they did.
Results
You’re going to run lots of different analyses to settle on what finally makes sense to get a result—positive or negative—for your study. For this section, you’re going to provide tables with descriptions of your sample, including, but not limited to, sample size, frequencies of sample characteristics like race and gender, levels of measurement, appropriate measures of central tendency, standard deviations and variances. Here you will also want to focus on the analyses you used to actually draw whatever conclusion you settled on, both descriptive and inferential (i.e., bivariate or multivariate).
The actual statistics you report depend entirely on the kind of statistical analysis you do. For instance, if you’re reporting on a logistic regression, it’s going to look a little different than reporting on an ANOVA. In the previous chapter, we provided links to open textbooks that detail how to conduct quantitative data analysis. You should look at these resources and consult with your research professor to help you determine what is expected in a report about the particular statistical method you used.
The important thing to remember here—as we mentioned above—is that you need to be totally transparent about your results, even and especially if they don’t support your hypothesis. There is value in a disproved hypothesis, too—you now know something about how the state of the world is not.
Discussion
In this section, you’re going to connect your statistical results back to your hypothesis and discuss whether your results support your hypothesis or not. You are also going to talk about what the results mean for the larger field of study of which your research is a part, the implications of your findings if you’re evaluating some kind of intervention, and how your research relates to what is already out there in this field. When your research doesn’t pan out the way you expect, if you’re able to make some educated guesses as to why this might be (supported by literature if possible, but practice wisdom works too), share those as well.
Let’s take a minute to talk about what happens when your findings disprove your hypothesis or actually indicate something negative about the group you are studying. The discussion section is where you can contextualize “negative” findings. For example, say you conducted a study that indicated that a certain group is more likely to commit violent crime. Here, you have an opportunity to talk about why this might be the case outside of their membership in that group, and how membership in that group does not automatically mean someone will commit a violent crime. You can present mitigating factors, like a history of personal and community trauma. It’s extremely important to provide this relevant context so that your results are more difficult to use against a group you are studying in a way that doesn’t reflect your actual findings.
Limitations
In this section, you’re going to critique your own study. What are the advantages, disadvantages, and trade-offs of what you did to define and analyze your variables? Some questions you might consider include: What limits the study’s applicability to the population at large? Were there trade-offs you had to make between rigor and available data? Did the statistical analyses you used mean that you could only get certain types of results? What would have made the study more widely applicable or more useful for a certain group? You should be thinking about this throughout the analysis process so you can properly contextualize your results.
In this section, you may also consider discussing any threats to internal validity that you identified and whether you think you can generalize your research. Finally, if you used any measurement tools that haven’t been validated yet, discuss how this could have affected your results.
Significance and conclusions
Finally, you want to use the conclusions section to bring it full circle for your reader—why did this research matter? Talk about how it contributed to knowledge around the topic and how might it be used to further practice. Identify and discuss ethical implications of your findings for social workers and social work research. Finally, make sure to talk about the next steps for you, other researchers, or policy-makers based on your research findings.
Key Takeaways
- Your quantitative research report should provide the reader with transparent, replicable methods and put your research into the context of existing literature, real-world practice and social work ethics.
Exercises
- Think about the research project you are building now. What could a negative finding be, and how might you provide your reader with context to ensure that you are not harming your study population?
process by which researchers spell out precisely how a concept will be measured in their study
Ability to say that one variable "causes" something to happen to another variable. Very important to assess when thinking about studies that examine causation such as experimental or quasi-experimental designs.