What’s cognitive growth like in early childhood?
Early childhood is a time of pretending, blending fact and fiction, and learning to think of the world using language. As young children move away from needing to touch, feel, and hear about the world toward learning basic principles about how the world works, they hold some pretty interesting initial ideas. For example, how many of you are afraid that you are going to go down the bathtub drain? Hopefully, none of you! But a child of three might really worry about this as they sit at the front of the bathtub. A child might protest if told that something will happen “tomorrow” but be willing to accept an explanation that an event will occur “today after we sleep.” Or the young child may ask, “How long are we staying? From here to here?” while pointing to two points on a table. Concepts such as tomorrow, time, size and distance are not easy to grasp at this young age. Understanding size, time, distance, fact, and fiction are all tasks that are part of cognitive development in the preschool years.
Learning Objectives
- Describe Piaget’s preoperational stage of development
- Illustrate limitations in early childhood thinking, including animism, egocentrism, and conservation errors
- Explain theory theory and theory of mind
- Explain language development and the importance of language in early childhood
- Describe Vygotsky’s model, including the zone of proximal development
- Compare preschool education programs and their developmental impacts
Piaget’s Theory of Cognitive Development
Table 1. Piaget’s Stages of Cognitive Development | |||
Age (years) | Stage | Description | Developmental issues |
0–2 | Sensorimotor | World experienced through senses and actions | Object permanence Stranger anxiety |
2–7 | Preoperational | Use words and images to represent things but lack logical reasoning | Pretend play Egocentrism Language development |
7–11 | Concrete operational | Understand concrete events and logical analogies; perform arithmetical operations | Conservation Mathematical transformations |
11– | Formal operational | Utilize abstract reasoning and hypothetical thinking | Abstract logic Moral reasoning |
Piaget’s Second Stage: The Preoperational Stage
Remember that Piaget believed that we are continuously trying to maintain balance in how we understand the world. With rapid increases in motor skill and language development, young children are constantly encountering new experiences, objects, and words. In the module covering main developmental theories, you learned that when faced with something new, a child may either assimilate it into an existing schema by matching it with something they already know or expand their knowledge structure to accommodate the new situation. During the preoperational stage, many of the child’s existing schemas will be challenged, expanded, and rearranged. Their whole view of the world may shift.
Piaget’s second stage of cognitive development is called the preoperational stage and coincides with ages 2-7 (following the sensorimotor stage). The word operation refers to the use of logical rules, so sometimes this stage is misinterpreted as implying that children are illogical. While it is true that children at the beginning of the preoperational stage tend to answer questions intuitively as opposed to logically, children in this stage are learning to use language and how to think about the world symbolically (symbolic thought). These skills help children develop the foundations they will need to consistently use operations in the next stage. Let’s examine some of Piaget’s assertions about children’s cognitive abilities at this age.
Pretend Play
Pretending is a favorite activity at this time. For a child in the preoperational stage, a toy has qualities beyond the way it was designed to function and can now be used to stand for a character or object unlike anything originally intended. A teddy bear, for example, can be a baby or the queen of a faraway land! This is an example of symbolic thinking.
Piaget believed that children’s pretend play and experimentation helped them solidify the new schemas they were developing cognitively. This involves both assimilation and accommodation, which results in changes in their conceptions or thoughts. As children progress through the preoperational stage, they are developing the knowledge they will need to begin to use logical operations in the next stage.
Egocentrism
Egocentrism in early childhood refers to the tendency of young children to think that everyone sees things in the same way as the child. Piaget’s classic experiment on egocentrism involved showing children a three-dimensional model of a mountain and asking them to describe what a doll that is looking at the mountain from a different angle might see. Children tend to choose a picture that represents their own, rather than the doll’s view. However, when children are speaking to others, they tend to use different sentence structures and vocabulary when addressing a younger child or an older adult. Consider why this difference might be observed. Do you think this indicates some awareness of the views of others? Or do you think they are simply modeling adult speech patterns?
Precausal Thinking
Similar to preoperational children’s egocentric thinking is their structuring of cause-and-effect relationships based on their limited view of the world. Piaget coined the term “precausal thinking” to describe the way in which preoperational children use their own existing ideas or views, like in egocentrism, to explain cause-and-effect relationships. Three main concepts of causality, as displayed by children in the preoperational stage, include animism, artificialism, and transductive reasoning.
Animism is the belief that inanimate objects are capable of actions and have lifelike qualities. An example could be a child believing that the sidewalk was mad and made them fall down, or that the stars twinkle in the sky because they are happy. To an imaginative child, the cup may be alive, the chair that falls down and hits the child’s ankle is mean, and the toys need to stay home because they are tired. Young children do seem to think that objects that move may be alive, but after age three, they seldom refer to objects as being alive (Berk, 2007). Many children’s stories and movies capitalize on animistic thinking. Do you remember some of the classic stories that make use of the idea of objects being alive and engaging in lifelike actions?
Artificialism refers to the belief that environmental characteristics can be attributed to human actions or interventions. For example, a child might say that it is windy outside because someone is blowing very hard, or the clouds are white because someone painted them that color.
Finally, precausal thinking is categorized by transductive reasoning. Transductive reasoning is when a child fails to understand the true relationships between cause and effect. Unlike deductive or inductive reasoning (general to specific, or specific to general), transductive reasoning refers to when a child reasons from specific to specific, drawing a relationship between two separate events that are otherwise unrelated. For example, if a child hears a dog bark and then a balloon pop, the child would conclude that because the dog barked, the balloon popped. Related to this is syncretism, which refers to a tendency to think that if two events occur simultaneously, one caused the other. An example of this might be a child asking the question, “if I put on my bathing suit will it turn to summer?”
Cognition Errors
Between the ages of four and seven, children tend to become very curious and ask many questions, beginning the use of primitive reasoning. There is an increase in curiosity in the interest of reasoning and wanting to know why things are the way they are. Piaget called it the “intuitive substage” because children realize they have a vast amount of knowledge, but they are unaware of how they acquired it.
Centration and conservation are characteristic of preoperative thought. Centration is the act of focusing all attention on one characteristic or dimension of a situation while disregarding all others. An example of centration is a child focusing on the number of pieces of cake that each person has, regardless of the size of the pieces. Centration is one of the reasons that young children have difficulty understanding the concept of conservation. Conservation is the awareness that altering a substance’s appearance does not change its basic properties. Children at this stage are unaware of conservation and exhibit centration. Imagine a 2-year-old and 4-year-old eating lunch. The 4-year-old has a whole peanut butter and jelly sandwich. He notices, however, that his younger sister’s sandwich is cut in half and protests, “She has more!” He is exhibiting centration by focusing on the number of pieces, which results in a conservation error.
In Piaget’s famous conservation task, a child is presented with two identical beakers containing the same amount of liquid. The child usually notes that the beakers do contain the same amount of liquid. When one of the beakers is poured into a taller and thinner container, children who are younger than seven or eight years old typically say that the two beakers no longer contain the same amount of liquid and that the taller container holds the larger quantity (centration), without taking into consideration the fact that both beakers were previously noted to contain the same amount of liquid.
Irreversibility is also demonstrated during this stage and is closely related to the ideas of centration and conservation. Irreversibility refers to the young child’s difficulty mentally reversing a sequence of events. In the same beaker situation, the child does not realize that, if the sequence of events was reversed and the water from the tall beaker was poured back into its original beaker, then the same amount of water would exist.
Centration, conservation errors, and irreversibility are indications that young children are reliant on visual representations. Another example of children’s reliance on visual representations is their misunderstanding of “less than” or “more than”. When two rows containing equal amounts of blocks are placed in front of a child with one row spread farther apart than the other, the child will think that the row spread farther contains more blocks.
Class inclusion refers to a kind of conceptual thinking that children in the preoperational stage cannot yet grasp. Children’s inability to focus on two aspects of a situation at once (centration) inhibits them from understanding the principle that one category or class can contain several different subcategories or classes. Preoperational children also have difficulty understanding that an object can be classified in more than one way. For example, a four-year-old girl may be shown a picture of eight dogs and three cats. The girl knows what cats and dogs are, and she is aware that they are both animals. However, when asked, “Are there more dogs or more animals?” she is likely to answer “more dogs.” This is due to her difficulty focusing on the two subclasses and the larger class all at the same time. She may have been able to view the dogs as dogs or animals, but struggled when trying to classify them as both, simultaneously. Similar to this is a concept relating to intuitive thought, known as “transitive inference.”
Transitive inference is using previous knowledge to determine the missing piece, using basic logic. Children in the preoperational stage lack this logic. An example of transitive inference would be when a child is presented with the information “A” is greater than “B” and “B” is greater than “C.” The young child may have difficulty understanding that “A” is also greater than “C.”
As the child’s vocabulary improves and more schemes are developed, they are more able to think logically, demonstrate an understanding of conservation, and classify objects.
Was Piaget Right?
It certainly seems that children in the preoperational stage make the mistakes in logic that Piaget suggests that they will make. That said, it is important to remember that there is variability in terms of the ages at which children reach and exit each stage. Further, there is some evidence that children can be taught to think in more logical ways far before the end of the preoperational period. For example, as soon as a child can reliably count they may be able to learn conservation of number. For many children, this is around age five. More complex conservation tasks, however, may not be mastered until closer to the end of the stage around age seven.
Information Processing
Information processing researchers have focused on several issues in cognitive development for this age group, including improvements in attention skills, changes in the capacity, and the emergence of executive functions in working memory. Additionally, in early childhood memory strategies, memory accuracy, and autobiographical memory emerge. Early childhood is seen by many researchers as a crucial time period in memory development (Posner & Rothbart, 2007) and making sense of the world.
Attention
Young children (age 3-4) have considerable difficulties in dividing their attention between two tasks, and often perform at levels equivalent to our closest relative, the chimpanzee, but by age five they have surpassed the chimp (Hermann et al., 2015; Hermann & Tomasello, 2015). Despite these improvements, 5-year-olds continue to perform below the level of school-age children, adolescents, and adults.
Children’s ability with selective attention improves as they age. Guy et al. (2013) found that children’s ability to selectively attend to visual information outpaced that of auditory stimuli. This may explain why young children are not able to hear the voice of the preschool teacher over the cacophony of sounds in the typical preschool classroom (Jones et al., 2015). Young children, between 3 and 7, also have more difficulty sustaining their attention when there are multiple distractions (Berwid et al., 2005).
Memory
There are dramatic improvements in memory in early childhood compared to infancy, but it’s not quite at the level of school-aged children. Children form more detailed autobiographical memories of events from their life. Most adults don’t remember events from the first few years of their life, but they can remember events from early childhood.
Each aspect of memory is less developed in young kids. They hold sounds for less time in sensory memory than do older children and adults (Gomes et al., 1999). The working memory of a 5-year-old is limited to about 4 digits, compared to the 7 digits available to teens and adults. Most kids in kindergarten do not use strategies to help them remember information (Schneider et al., 2009). More useful strategies emerge in school-aged kids.
More recently information processing researchers have added to this understanding by examining how children organize information and develop their own theories about the world.
Theory Theory
The tendency of children to generate theories to explain everything they encounter is called theory-theory. This concept implies that humans are naturally inclined to find reasons and generate explanations for why things occur. Children frequently ask question about what they see or hear around them. When the answers provided do not satisfy their curiosity or are too complicated for them to understand, they generate their own theories. In much the same way that scientists construct and revise their theories, children do the same with their intuitions about the world as they encounter new experiences (Gopnik & Wellman, 2012). One of the theories they start to generate in early childhood centers on the mental states; both their own and those of others.
Theory of Mind
How do we come to understand how our mind works? The theory of mind is the understanding that the mind holds people’s beliefs, desires, emotions, and intentions. One component of this is understanding that the mind can be tricked or that the mind is not always accurate.
A two-year-old child does not understand very much about how their mind works. They can learn by imitating others, they are starting to understand that people do not always agree on things they like, and they have a rudimentary understanding of cause and effect (although they often fall prey to transitive reasoning). By the time a child is four, their theory of the mind allows them to understand that people think differently, have different preferences, and even mask their true feelings by putting on a different face that differs from how they truly feel inside.
To think about what this might look like in the real world, imagine showing a three-year-old child a version of the false belief test. Show them a bandaid box and ask the child, “what is in the box?” Chances are, the child will reply, “bandaids.” Now imagine that you open the box and pour out crayons. If you now ask the child what they thought was in the box before it was opened, they may respond, “crayons.” If you ask what a friend would have thought was in the box, the response would still be “crayons.” Why?
Before about four years of age, a child does not recognize that the mind can hold ideas that are not accurate, so this three-year-old changes their response once they are shown that the box contains crayons. The child’s response can also be explained in terms of egocentrism and irreversibility. The child’s response is based on their current view rather than seeing the situation from another person’s perspective (egocentrism) or thinking about how they arrived at their conclusion (irreversibility). At around age four, the child would likely reply, “bandaids” when asked after seeing the crayons because by this age a child is beginning to understand that thoughts and realities do not always match.
Theory of Mind and Social Intelligence
This awareness of the existence of the mind is part of social intelligence and the ability to recognize that others can think differently about situations. It helps us to be self-conscious or aware that others can think of us in different ways, and it helps us to be able to be understanding or empathetic toward others. This developing social intelligence helps us to anticipate and predict the actions of others (even though these predictions are sometimes inaccurate). The awareness of the mental states of others is important for communication and social skills. A child who demonstrates this skill is able to anticipate the needs of others.
Language Development
A child’s vocabulary expands between the ages of two to six from about 200 words to over 10,000 words through a process called fast-mapping. Words are easily learned by making connections between new words and concepts already known. The parts of speech that are learned depend on the language and what is emphasized. Children speaking verb-friendly languages such as Chinese and Japanese tend to learn verbs more readily, but those learning less verb-friendly languages such as English seem to need assistance in grammar to master the use of verbs (Imai, et als, 2008). Children are also very creative in creating their own words to use as labels such as a “take-care-of” when referring to John, the character on the cartoon Garfield, who takes care of the cat.
Children can repeat words and phrases after having heard them only once or twice, but they do not always understand the meaning of the words or phrases. This is especially true of expressions or figures of speech that are taken literally. For example, two preschool-aged girls began to laugh loudly while listening to a tape-recording of Disney’s “Sleeping Beauty” when the narrator reports, “Prince Phillip lost his head!” They imagine his head popping off and rolling down the hill as he runs and searches for it. Or a classroom full of preschoolers hears the teacher say, “Wow! That was a piece of cake!” The children began asking “Cake? Where is my cake? I want cake!”
Under- and Overextension
A child who learns that a word stands for an object may initially think that the word can be used for only that particular object. Only the family’s Irish Setter is a “doggie.” This is referred to as underextension. More often, a child may think that a label applies to all objects that are similar to the original object. In overextension (also referred to as logical extension), all animals become “doggies,” for example.
Overregularization
Children learn the rules of grammar as they learn the language. Some of these rules are not taught explicitly, and others are. Often when learning language intuitively children apply rules inappropriately at first. But even after successfully navigating the rule for a while, at times, explicitly teaching a child a grammar rule may cause them to make mistakes they had previously not been making. For instance, two- to three-year-old children may say “I goed there” or “I doed that” as they understand intuitively that adding “ed” to a word makes it mean “something I did in the past.” As the child hears the correct grammar rule applied by the people around them, they correctly begin to say “I went there” and “I did that.” It would seem that the child has solidly learned the grammar rule, but it is actually common for the developing child to revert back to their original mistake. This happens as they overregulate the rule. This can happen because they intuitively discover the rule and overgeneralize it or because they are explicitly taught to add “ed” to the end of a word to indicate past tense in school. A child who had previously produced correct sentences may start to form incorrect sentences such as, “I goed there. I doed that.” These children are able to quickly re-learn the correct exceptions to the -ed rule.
Vygotsky and Language Development
Vygotsky differed with Piaget in that he believed that a person not only has a set of abilities, but also a set of potential abilities that can be realized if given the proper guidance from others. He believed that through guided participation known as scaffolding, with a teacher or capable peer, a child can learn cognitive skills within a certain range known as the zone of proximal development. While Piaget’s ideas of cognitive development assume that development through certain stages is biologically determined, originates in the individual, and precedes cognitive complexity, Vygotsky presents a different view in which learning drives development. The idea of learning driving development, rather than being determined by the developmental level of the learner, fundamentally changes our understanding of the learning process and has significant instructional and educational implications (Miller, 2011).
Have you ever taught a child to perform a task? Maybe it was brushing their teeth or preparing food. Chances are you spoke to them and described what you were doing while you demonstrated the skill and let them work along with you throughout the process. You gave them assistance when they seemed to need it, but once they knew what to do-you stood back and let them go. This is scaffolding. This approach to teaching has also been adopted by educators. Rather than assessing students on what they are doing, they should be understood in terms of what they are capable of doing with the proper guidance.
This difference in assumptions has significant implications for the design and development of learning experiences. If we believe as Piaget did that development precedes learning, then we will make sure that new concepts and problems are not introduced until learners have developed innate capabilities to understand them. On the other hand, if we believe as Vygotsky did that learning drives development and that development occurs as we learn a variety of concepts and principles, recognizing their applicability to new tasks and new situations, then our instructional design will look very different
Children can be assisted in learning language by others who listen attentively, model more accurate pronunciations, and encourage elaboration. For example, if the child exclaims, “I’m goed there!” then the adult responds, “You went there?” Children may be hard-wired for language development, as Noam Chomsky suggested in his theory of universal grammar, but active participation is also important for language development. The process of scaffolding is one in which the guide provides needed assistance to the child as a new skill is learned. Repeating what a child has said, but in a grammatically correct way, is scaffolding for a child who is struggling with the rules of language production.
Private Speech
Do you ever talk to yourself? Why? Chances are, this occurs when you are struggling with a problem, trying to remember something, or feel very emotional about a situation. Children talk to themselves too. Piaget interpreted this as egocentric speech or a practice engaged in because of a child’s inability to see things from other points of view. Vygotsky, however, believed that children talk to themselves in order to solve problems or clarify thoughts. As children learn to think in words, they do so aloud before eventually closing their lips and engaging in private speech or inner speech. Thinking out loud eventually becomes thought accompanied by internal speech, and talking to oneself becomes a practice only engaged in when we are trying to learn something or remember something, etc. This inner speech is not as elaborate as the speech we use when communicating with others (Vygotsky, 1962).
Vygotsky and Education
Vygotsky’s theories do not just apply to language development but have been extremely influential for education in general. Although Vygotsky himself never mentioned the term scaffolding, it is often credited to him as a continuation of his ideas pertaining to the way adults or other children can use guidance in order for a child to work within their ZPD. (The term scaffolding was first developed by Jerome Bruner, David Wood, and Gail Ross while applying Vygotsky’s concept of ZPD to various educational contexts.)
Educators often apply these concepts by assigning tasks that students cannot do on their own, but which they can do with assistance; they should provide just enough assistance so that students learn to complete the tasks independently and then provide an environment that enables students to do harder tasks than would otherwise be possible. Teachers can also allow students with more knowledge to assist students who need more guidance. Especially in the context of collaborative learning, group members who have higher levels of understanding can help the less advanced members learn within their zone of proximal development.
30 Million Word Gap
To accomplish the tremendous rate of word learning that needs to occur during early childhood, it is important that children are learning new words each day. Research by Betty Hart and Todd Risley in the late 1990s and early 2000s indicated that children from less advantaged backgrounds are exposed to millions of fewer words in their first three years of life than children who come from more privileged socioeconomic backgrounds. In their research, families were classified by socioeconomic status, (SES) into “high” (professional), “middle” (working class), and “low” (welfare) SES. They found that the average child in a professional family hears 2,153 words per waking hour, the average child in a working-class family hears 1,251 words per hour, and an average child in a welfare family only 616 words per hour. Extrapolating, they stated that, “in four years, an average child in a professional family would accumulate experience with almost 45 million words, an average child in a working-class family 26 million words, and an average child in a welfare family 13 million words.” The line of thinking following their study is that children from more affluent households would enter school knowing more words, which would give them an advantage in school. And the gaps only become more pronounced. Before entering kindergarten, high-income children score 60% higher on achievement tests than their low-income peers (Lee & Burkam, 2002).
Hart and Risley’s research has been criticized for having a small sample size of 42 families (Kamenetz, 2018). Critics also theorize that the language and achievement gaps are not a result of the number of words a child is exposed to, but rather alternative theories suggest it could reflect the disconnect of linguistic practices between home and school. Thus, judging academic success and linguistic capabilities from socioeconomic status may ignore bigger societal issues. A replication of Hart and Risley’s study with more participants found that the “word gap” may be closer to 4 million words, and there was a lot of variability within SES groups showing that “many lower SES parents can and do talk with their children at above-average levels” (Gilkerson et al., 2017, p. 261). Notwithstanding, the ongoing word gap research is evidence of the importance of language development in early childhood.
The achievement gap refers to the persistent difference in grades, test scores, and graduation rates that exist among students of different ethnicities, races, and—in certain subjects—sexes (Winerman, 2011). Research suggests that these achievement gaps are strongly influenced by differences in socioeconomic factors that exist among the families of these children. While the researchers acknowledge that programs aimed at reducing such socioeconomic discrepancies would likely aid in equalizing the aptitude and performance of children from different backgrounds, they recognize that such large-scale interventions would be difficult to achieve. Therefore, it is recommended that programs aimed at fostering aptitude and achievement among disadvantaged children may be the best option for dealing with issues related to academic achievement gaps (Duncan & Magnuson, 2005).
There are solutions to this problem. At the University of Chicago, experts are working with low-income families, visiting them at their homes, and encouraging them to speak more to their children on a daily and hourly basis. Other experts are designing preschools in which students from diverse economic backgrounds are placed in the same classroom. In this research, low-income children made significant gains in their language development, likely as a result of attending the specialized preschool (Schechter & Byeb, 2007). What other methods or interventions could be used to decrease the achievement gap? What types of activities could be implemented to help the children of your community or a neighboring community?
Early Childhood Education
Providing universal preschool has become an important lobbying point for federal, state, and local leaders throughout our country. In his 2013 State of the Union address, President Obama called upon congress to provide high quality preschool for all children. He continued to support universal preschool in his legislative agenda, and in December 2014 the President convened state and local policymakers for the White House Summit on Early Education (White House Press Secretary, 2014).
However, universal preschool covering all four-year olds in the country would require significant funding. Further, how effective preschools are in preparing children for elementary school, and what constitutes high quality early childhood education have been debated. To set criteria for designation as a high quality preschool, the National Association for the Education of Young Children (NAEYC) identifies 10 standards (NAEYC, 2016). These include:
- Positive relationships among all children and adults are promoted.
- A curriculum that supports learning and development in social, emotional, physical, language, and cognitive areas.
- Teaching approaches that are developmentally, culturally and linguistically appropriate.
- Assessment of children’s progress to provide information on learning and development.
- The health and nutrition of children are promoted, while they are protected from illness and injury.
- Teachers possess the educational qualifications, knowledge, and commitment to promote children’s learning.
- Collaborative relationships with families are established and maintained.
- Relationships with agencies and institutions in the children’s communities are established to support the program’s goals.
- The indoor and outdoor physical environments are safe and well-maintained.
- Leadership and management personnel are well qualified, effective, and maintain licensure status with the applicable state agency.
Parents should review preschool programs using the NAEYC criteria as a guide and template for asking questions that will assist them in choosing the best program for their child.
Selecting the right preschool is also difficult because there are so many types of preschools available. Zachry (2013) identified Montessori, Waldorf, Reggio Emilia, High Scope, Creative Curriculum and Bank Street as types of early childhood education programs that focus on children learning through discovery, which is considered child-centered or developmental programs. Teachers act as facilitators of children’s learning and development and create activities based on the child’s developmental level. In line with Piaget’s view, children are seen as active explorers in creating their own knowledge. In line with Vygotsky’s view, children are encouraged to play with other children.
In contrast, teacher-directed programs focus more on building academic skills. Teachers introduce new concepts that will prepare children for grade school. For example, they may identify letters, numbers, colors, and shapes. In line with behavioral theories of learning, this approach incorporates repetition, direct instruction, drills, and breaking down tasks in small steps (Parker & Neuharth-Pritchett, 2006). This approach is often driven by accountability demands by local and federal governments.
Most developmentalists favor a child-centered approach in line with the constructivist views for how children learn espoused by Piaget and Vygotsky (Parker & Neuharth-Pritchett, 2006). The NAEYC recognizes that early childhood education does not have to be an either/or proposition and children can benefit from incorporating elements from each type of program.
Link to Learning
Explore how teacher-directed and child-centered approaches can be combined in an early childhood classroom.
Masterson, M. L. (2021). Transforming teaching: Creating lesson plans for child-centered learning in preschool. National Association for the Education of Young Children, pp. 34–35.