IX. Música dodecafónica

Convencións para dar nome ás series

Mark Gotham

Puntos principais

  • Este capítulo describe as diferentes maneiras que hai de representar o material dodecafónico:
    • as alturas polo nome da altura ou por clase de altura;
    • as series e transformacións de forma que p inicio de P0 sexa Dó (cero fixo) ou ben a nota que escollamos (cero móbil)
    • as matrices, que van depender das convencións das series.
  • Cando leas outros textos sobre música dodecafónica, ten en conta que pode usar calquera destas convencións. Porén, no teu propio traballo podes escoller a que che pareza máis cómoda, só tes que usala de xeito coherente.

Ao analizarmos música dodecafónica,existen diferentes convencións para dar nome ás series, transformacións e mesmo ás alturas e intervalos. Este capítulo compara os enfoques principais que é probable que encontres en documentos analíticos. ímonos centrar nas series e as matrices, mais antes imos falar coas propias alturas.

Altura

Como xa vimos nun capítulo anterior deste libro, nalgúns contextos analíticos é útil usarmos a notación de clases de altura (números enteiros do 0 para Dó ao 11 para Si) como alternativa a dicir o nome das alturas (por exemplo Dó♯ ou Re♭). Esta convención é asociada principalmente coa música non tonal (como a música dodecafónica), onde pode ser práctico para efectuarmos as operacións matemáticas que xa vimos (tanto na análise de conxuntos de clases de altura e música dodecafónica) e para evitarmos a cuestión da escrita de alturas. Si que hai moitas veces unha lóxica na escrita das alturas que se empregan nunha peza dodecafónica, mais esa lóxica moitas veces é diferente e se cadra menos xeneralizable. Por exemplo, empregar unha escrita específica dunha altura na representación dunha forma da serie normalmente non reflicte unha xerarquía ou tonalidade na mesma maneira en que acontece coas alturas dunha escala da música tonal.

Series

Para as series, a principal diferenza na notación e nos nomes ten que ver coa escolla da altura coa cal organizamos as nosas series:

  1. a mesma altura en todos os contextos (por convención, a altura é Dó)
  2. unha altura que é importante neste contexto musical en cuestión

Por exemplo, no capítulo sobre os fundamentos da teoría dodecafónica, escribimos a serie do Motet de Elisabeth Lutyens comezando en Dó, e así obtivemos a serie dodecafónica 0–11–3–7–8–4–2–6–5–1–9–10. A alternativa era escribirmos a P0 comezando en Re, porque a primeira voz que entra (contralto) comeza en Re4 e fai o primeiro hexacordo desta forma primaria da serie nesa altura.[1] That would give us a P0 of 2–1–5–9–10–6–4–8–7–3–11–0.

Opción 1: P0 comeza en Dó (cero fixo)

In this convention, whatever you decide the prime form to be, the transposition of that form starting on C is P0. This is probably the most common convention today, and sometimes called “zero-centered” or “fixed-zero” (by analogy to tonal solfège systems).

As we have set P0 to begin on C, I0 also begins on C, and R0 and RI0 will end on C. This separation of P0 and I0 from R0 and RI0 makes sense because we prefer P0 and R0 to be exact retrogrades of one other (and likewise I0 and RI0). We could theoretically have an even more consistently “zero-centered” system in which all of P0, I0, R0 and RI0 begin on C, but that’s not a convention that people have widely adopted.

In summary:

  • P0 starts with C
  • I0 starts with C (same pitch class as P0)
  • R0 starts with the last note of P0 (by definition, not C)
  • RI0 starts with the last note of I0 (by definition, not C)

Opción 2: P0 comeza onde queiramos (cero móbil)

In the alternative method, the P0 form is assigned to either the first form of the row or the one that is most meaningful—regardless of what pitch class begins the row. Depending on the context, this may be evident from the piece, deduced from the analysis, or allocated semi-arbitrarily. Transpositions and other operations are then worked out in the same way, in relation to that P0 form. This convention is sometimes called “original-centered” or “movable-zero” (to continue the solfège analogy).

In summary:

  • P0 takes a transposition (and thus starts with a pitch) chosen by the analyst
  • I0 still starts with the same note as P0
  • R0 still starts with the last note of P0
  • RI0 still starts with the last note of I0

É o mesmo ou diferente? Mellor ou peor?

As the two summaries suggest, these naming conventions are actually not so different. It bears repeating that for all naming systems, transposition and the other operations all work in the same way, so it’s mostly just a matter of where you start: which row form you use as the referential form to relate others to.

And as is so often the case when multiple parallel naming conventions emerge, there are both benefits and downsides to each approach. If you’re analyzing music that makes you want to assign P0 in a musically sensitive way, then the moveable-zero convention may suit your purposes. But if you go down that route, then you’ll probably feel compelled to come up with a “good” reason for the pitch level of P0 in all your analyses, and that may not always be appropriate. The fixed-zero system has the benefit of clarity and consistency. That’s probably why it’s become more common in recent scholarship, but that doesn’t necessarily make it “better.”

Indeed, in many cases, it won’t even be clear which orientation should be P and which I (or R for that matter). Unfortunately, there isn’t yet a widely recognized system for making such determinations.

Matrices

Before we wrap this up, there’s one final confusion to add to the pile: how to set out these conventions on the row matrix. Here are three types.

Tipo 1

First, here’s a reminder of the matrix we saw for the Lutyens example in the last chapter (P0 starts on C and is in the top row). This is probably the most common and standard form.

I0 I11 I3 I7 I8 I4 I2 I6 I5 I1 I9 I10
P0 0 11 3 7 8 4 2 6 5 1 9 10 R10
P1 1 0 4 8 9 5 3 7 6 2 10 11 R11
P9 9 8 0 4 5 1 11 3 2 10 6 7 R7
P5 5 4 8 0 1 9 7 11 10 6 2 3 R3
P4 4 3 7 11 0 8 6 10 9 5 1 2 R2
P8 8 7 11 3 4 0 10 2 1 9 5 6 R6
P10 10 9 1 5 6 2 0 4 3 11 7 8 R8
P6 6 5 9 1 2 10 8 0 11 7 3 4 R4
P7 7 6 10 2 3 11 9 1 0 8 4 5 R5
P11 11 10 2 6 7 3 1 5 4 0 8 9 R9
P3 3 2 6 10 11 7 5 9 8 4 0 1 R1
P2 2 1 5 9 10 6 4 8 7 3 11 0 RI0
RI2 RI1 RI5 RI9 RI10 RI6 RI4 RI8 RI7 RI3 RI11 RI0

Tipo 2

Now here’s the same matrix, with P0 still on the top row, but with that P0 starting on D. Note how the lists of row forms stay the same (P0, P1, P9…), but the pitches have moved around.

I0 I11 I3 I7 I8 I4 I2 I6 I5 I1 I9 I10
P0 2 1 5 9 10 6 4 8 7 3 11 0 R10
P1 3 2 6 10 11 7 5 9 8 4 0 1 R11
P9 11 10 2 6 7 3 1 5 4 0 8 9 R7
P5 7 6 10 2 3 11 9 1 0 8 4 5 R3
P4 6 5 9 1 2 10 8 0 11 7 3 4 R2
P8 10 9 1 5 6 2 0 4 3 11 7 8 R6
P10 0 11 3 7 8 4 2 6 5 1 9 10 R8
P6 8 7 11 3 4 0 10 2 1 9 5 6 R4
P7 9 8 0 4 5 1 11 3 2 10 6 7 R5
P11 1 0 4 8 9 5 3 7 6 2 10 11 R9
P3 5 4 8 0 1 9 7 11 10 6 2 3 R1
P2 4 3 7 11 0 8 6 10 9 5 1 2 RI0
RI2 RI1 RI5 RI9 RI10 RI6 RI4 RI8 RI7 RI3 RI11 RI0

Tipo 3

Perhaps most confusing of all is a kind of hybrid version where we still have the D version on the top row, but now we label it P2. So:

  • We organize the row class around a chosen pitch/transposition (here D).
  • We still label the row forms around the alternative option (P0 starts on C).

Note how this time, comparing it with the version above, the pitches have stayed the same, but the lists of row forms have changed (Px, Py…).

I2 I1 I5 I9 I10 I6 I4 I8 I7 I3 I11 I0
P2 2 1 5 9 10 6 4 8 7 3 11 0 R2
P3 3 2 6 10 11 7 5 9 8 4 0 1 R3
P11 11 10 2 6 7 3 1 5 4 0 8 9 R11
P7 7 6 10 2 3 11 9 1 0 8 4 5 R7
P6 6 5 9 1 2 10 8 0 11 7 3 4 R6
P10 10 9 1 5 6 2 0 4 3 11 7 8 R10
P0 0 11 3 7 8 4 2 6 5 1 9 10 R0
P8 8 7 11 3 4 0 10 2 1 9 5 6 R8
P9 9 8 0 4 5 1 11 3 2 10 6 7 R9
P1 1 0 4 8 9 5 3 7 6 2 10 11 R1
P5 5 4 8 0 1 9 7 11 10 6 2 3 R5
P4 4 3 7 11 0 8 6 10 9 5 1 2 R4
RI2 RI1 RI5 RI9 RI10 RI6 RI4 RI8 RI7 RI3 RI11 RI0

Resumo

En resumo, a primeira serie pode ser:

  • P0, comezando en 0
  • P0, comezando en n (aquí 2)
  • Pn, comezando en n

All of these naming and matrix-generating conventions are out there. It’s best simply to be aware of these options and check that you have the right convention in mind when you come across one (especially where the matrices neglect to explicitly label the row names).

Further Reading
  • Parsons, Laurel, 1999. “Music and Text in Elisabeth Lutyens’s Wittgenstein Motet.” Canadian University Music Review 20 (1): 71–100.
Assignments
  1. Chose any row from the Twelve-Tone Anthology that interests you and write out the row matrix with all 48 row forms (i.e., with numbers on the grid as shown above) in each of the three ways shown above. (Then choose your favorite method and never do this again!)

  1. The actual row distribution is a bit more complicated. See Parsons 1999 for an analysis and discussion.
definition

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Teoría Musical Aberta (tradución en progreso) Copyright © 2022 by Mark Gotham is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book