Eigenvalue decomposition of a symmetric matrix

Let

     \begin{align*} A:=\left(\begin{array}{cc} 3/2 & -1/2 \\ -1/2 & 3/2 \end{array}\right). \end{align*}

We solve for the characteristic equation:

    \begin{align*} 0 &= \det(\lambda I-A) = (\lambda -(3/2))^2 -(1/4) = (\lambda-1)(\lambda-2). \end{align*}

Hence the eigenvalues are \lambda_1 =1, \lambda_2 =2. For each eigenvalue \lambda , we look for a unit-norm vector u such that Au = \lambda u. For \lambda =\lambda_1, we obtain the equation in u= u_1

    \begin{align*} 0 &= (A-\lambda_1) u_1 = \left(\begin{array}{cc} 1/2 & -1/2 \\ -1/2 & 1/2 \end{array}\right) u_1 \end{align*}

which leads to (after normalization) an eigenvector u_1: := (1/\sqrt{2})[1,1]. Similarly for \lambda_2 we obtain the eigenvector u_2: := (1/\sqrt{2})[1,-1]. Hence, A admits the SED (Symmetric Eigenvalue Decomposition)

    \begin{align*} A=&\left(\frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)\right)^T\left(\begin{array}{ll} 1 & 0 \\ 0 & 2 \end{array}\right)\left(\frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)\right). \end{align*}

See alsoSums-of-squares for a quadratic form.

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Linear Algebra and Applications Copyright © 2023 by VinUiversity is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.

Share This Book