Representation of a two-variable quadratic function
The quadratic function
, with values
![]()
can be represented via a symmetric matrix, as
![Rendered by QuickLaTeX.com \[ q(x) = \left(\begin{array}{c} x_1 \\ x_2 \\ 1 \end{array}\right)^T \left(\begin{array}{ccc} 4 & 3 / 2 & 2 \\ 3 / 2 & 2 & 5 / 2 \\ 2 & 5 / 2 & 2 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ 1 \end{array}\right). \]](https://pressbooks.pub/app/uploads/quicklatex/quicklatex.com-17cb8e4a667edf25700070cade37e70a_l3.png)
In short:
![Rendered by QuickLaTeX.com \[ q(x) = \left(\begin{array}{c} x \\ \hline 1 \end{array}\right)^T \left( \renewcommand{\arraystretch}{1.2} \begin{array}{c@{\hspace{0.5em}}|@{\hspace{0.5em}}c} A & b \\ \hline b^T & c \end{array} \right) \left(\begin{array}{l} x \\ 1 \end{array}\right), \]](https://pressbooks.pub/app/uploads/quicklatex/quicklatex.com-8d86fbf44b11c246e934698a4d4b3287_l3.png)
where
is the vector
, and
![]()
The quadratic function
, with values
![]()
can be represented via a symmetric matrix, as
![Rendered by QuickLaTeX.com \[ q(x) = \left(\begin{array}{c} x_1 \\ x_2 \\ 1 \end{array}\right)^T \left(\begin{array}{ccc} 4 & 3 / 2 & 2 \\ 3 / 2 & 2 & 5 / 2 \\ 2 & 5 / 2 & 2 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ 1 \end{array}\right). \]](https://pressbooks.pub/app/uploads/quicklatex/quicklatex.com-17cb8e4a667edf25700070cade37e70a_l3.png)
In short:
![Rendered by QuickLaTeX.com \[ q(x) = \left(\begin{array}{c} x \\ \hline 1 \end{array}\right)^T \left( \renewcommand{\arraystretch}{1.2} \begin{array}{c@{\hspace{0.5em}}|@{\hspace{0.5em}}c} A & b \\ \hline b^T & c \end{array} \right) \left(\begin{array}{l} x \\ 1 \end{array}\right), \]](https://pressbooks.pub/app/uploads/quicklatex/quicklatex.com-8d86fbf44b11c246e934698a4d4b3287_l3.png)
where
is the vector
, and
![]()