Singular value decomposition of a 4 x 5 matrix

Consider the matrix

    \[ A = \left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 2 \\0 & 0 & 3 & 0 & 0 \\0 & 0 & 0 & 0 & 0 \\0 & 4 & 0 & 0 & 0 \\\end{array} \right). \]

A singular value decomposition of this matrix is given by A = U \tilde{\mathit{S}} V^T, with

    \[ U = \left( \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ \end{array} \right) , \quad \tilde{\mathit{S}} = \left( \begin{array}{ccccc} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{array} \right) , \quad V^T = \left( \begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ - \sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2} \\ \end{array} \right) . \]

Notice above that \tilde{\mathit{S}} has non-zero values only in its diagonal, and can be written as

    \[ \tilde{\mathit{S}} = \mathbf{diag}(\mathit{S}, 0, 0), \quad \mathit{S} := \mathbf{diag}(\sigma_1,\sigma_2,\sigma_3), \]

with \sigma_1 = 4, \sigma_2 = 3, \sigma_3 = \sqrt{5}. The rank of A (which is the number of non-zero elements on the diagonal matrix \tilde{\mathit{S}}) is thus r = 3 < \min(m,n). We can check that V^TV = VV^T = I_5, and UU^T = U^TU= I_4.

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Linear Algebra and Applications Copyright © 2023 by VinUiversity is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.

Share This Book