Kinematics Equations

 Constant\ Velocity\ :\ a=0  Constant\ Acceleration
x =vt + x_0 \bar{v} = \frac{v_0 + v_f}{2}
v =at + v_0
x = \frac{1}{2}at^2 + v_0 t + x_0
v^2 - v_0^2 = 2a \Delta x

|\vec a_c |= \frac{v^2}{r}         Centripetal Acceleration

\vec a = \frac{\sum \vec F}{m}

\boxed{F=G\frac{m_1 m_2}{r^2}}             Newton’s Universal Law of Gravitation

|\vec f_k|=\mu_k|\vec N|         Kinetic Friction Force

0<|\vec f_s|<|\vec f_s|_{max}           Range Of Static Friction Force

|\vec f_s|_{max}=\mu_s|\vec N|        Maximum Static Friction Force

F_{spring}=-Kx                      Hooke’s Law

W=FdCos\theta                              Work done by  a constant force

 W_{net}=\Delta KE          is the same as       W_{ncf}=\Delta KE + \Delta U

If         W_{ncf}=0          Then           \Delta KE + \Delta U=0

 \Delta KE + \Delta U=0         is the same as       KE_i+U_i =KE_f + U_f

KE =\frac{1}{2}mv^2

U_{grav}=mgy

U_{elastic} =\frac{1}{2}Kx^2

\vec P = m \vec v                    Linear Momentum

\Delta \vec P=(\sum \vec F)(\Delta t )                          Impulse-Momentum Equation

\Delta \vec P_1+\Delta \vec P_2=0    is the same as       \vec P_{1i}+ \vec P_{2i}=\vec P_{1f}+\vec P_{2f}    is the same as     \vec P_{(system)i} =\vec P_{(system)f}     is the same as      \Delta \vec P_{(system)}=0 Conservation Of Linear Momentum

x_{cm}=\frac{\sum{m_ix_i}}{M}               X-Coordinate Of  Center Of Mass

y_{cm}=\frac{\sum{m_iy_i}}{M}               Y-Coordinate Of  Center Of Mass

\bar \omega=\frac{\Delta \theta}{\Delta t}             Average Angular Velocity

\omega=\frac{1}{r}v\ ,\ v=r\omega

I=\sum {m_i {r_i }^2}                       Moment Of Inertia

KE=\frac{1}{2} I \omega^2                           Rotational Kinetic Energy

I=I_{cm}+Mh^2                            parallel axis theorem

v_{cm}=R\omega                         Rolling without slipping

\bar \alpha=\frac{\Delta \omega}{\Delta t}                     Average Angular Acceleration

\bar \alpha=\frac{1}{r}\bar a_t\ ,\ \bar a_t = r\bar \alpha

 
Rotational Translational Relationship (r=radius)
\theta s \theta=\frac{s}{r}
\omega v_t \omega=\frac{v_t}{r}
\alpha a_t  (due to speeding up/slowing down) \alpha=\frac{a_t}{r}
a_c  (due to change in direction of velocity) a_c=\frac{v_t^2}{r}
 

Translational Motion with Constant Acceleration

Rotational Motion with Constant Angular Acceleration

\bar{v} = \frac{v_0 + v_f}{2} \bar{\omega} = \frac{\omega_0 + \omega_f}{2}
v =at + v_0 \omega =\alpha t + \omega_0
x = \frac{1}{2}at^2 + v_0 t + x_0 \theta = \frac{1}{2}\alpha t^2 + \omega_0 t + \theta_0
v^2 - v_0^2 = 2a \Delta x \omega^2 - \omega_0^2 = 2\alpha \Delta \theta

|\vec\tau|=|\vec F|rSin\theta                        Torque

\alpha=\frac{\sum\vec\tau}{I}                     Newton’s Second Law for rotational motion

\vec L = I \vec \omega                            Angular Momentum

 

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Introduction to Physics Copyright © 2019 by Beta Keramati is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book